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Abstract. It is known that the generating function of the Fibonacci sequence, F (x) =∑
Fix

i = x+ x2 +2x3 +3x4 +5x5 + · · · , attains an integer value if x = Fi/Fi+1 for any non-
negative integer i. It has been conjectured that those values constitute all rational numbers,
in the interval of convergence of F , that result in F (x) ∈ Z. In this paper we prove this
conjecture. We also extend these results to the class of sequences satisfying the recursion
relation Ri+2 = aRi+1 + bRi with initial values (R0, R1) = (0, 1), where a and b are positive
integers satisfying b | a.

Introduction

Let a and b be positive integers. Consider a sequence {Ri}i∈N given by Ri+2 = aRi+1 + bRi

and some initial values (R0, R1). The generating function for {Ri} is given by

R(x) =

∞
∑

i=0

Rix
i.

Define

φ =
a+

√
a2 + 4b

2
and ψ =

a−
√
a2 + 4b

2
.

Then I = (ψ/b,−ψ/b) is the interval of convergence for R(x), on which we have

R(x) =
R0(1− ax) +R1x

1− ax− bx2
.

If (a, b,R0, R1) = (1, 1, 0, 1) or (a, b,R0, R1) = (1, 1, 2, 1), then {Ri} becomes the Fibonacci
sequence {Fi} or the Lucas sequence {Li}, respectively. Let F (x) and L(x) denote the respec-
tive generating functions for these sequences. It was shown in [2] that, for any i ∈ N, F (x) is an
integer when x = F2i/F2i+1, and L(x) is an integer when x = F2i/F2i+1 or x = L2i+1/L2i+2.
A question was then posed asking whether these values constitute all rational numbers in

I = (1−
√
5

2 ,−1−
√
5

2 ) for which the respective generating function is an integer. In this paper
we demonstrate an affirmative answer to this question. We also extend our results to sequences
for which (R0, R1) = (0, 1) and a, b are positive integers, but we find that it is necessary to
stipulate that b is a factor of a.

Generalized Fibonacci Sequences

In this section, we set (R0, R1) = (0, 1) and require a, b to be positive integers. Our goal is
to establish the following result.

Theorem 1.1. Suppose b divides a. The rational numbers x ∈ I for which R(x) is an integer

are precisely those of the form x = R2i/R2i+1 where i ∈ N.
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The proof will be given at the end of this section. First we lay out some framework and
preliminary results. We begin by pointing out some basic properties of {Ri}. A basic induction
argument reveals the following closed form formula for Rr in terms of matrices:

(

Rr+1 Rr

Rr Rr−1

)

=

(

a 1
1 0

)(

a 1
b 0

)r−1

.

Taking determinants gives a generalization of Cassini’s identity:

Rr−1Rr+1 = R2
r − (−b)r−1. (1.1)

Also, a straightforward induction argument demonstrates a generalization of Binet’s formula:

Rr =
φr − ψr

φ− ψ
. (1.2)

Moving forward, we impose the condition that b divides a and we establish several Lemmas
which will drive the proof of the main theorem. One consequence of the condition b | a is that
a2 + 4b is not a square. Indeed, the equation a2 + 4b = c2 leads to 4b = b2(c′ + a′)(c′ − a′)
where a = ba′ and c = bc′. There are only three cases, b = 1, b = 2, b = 4, and none of them
gives a solution. The necessity of the condition b | a in Theorem 1.1 is demonstrated at the
end of this section after the proof of Theorem 1.1.

Consider the set of all real numbers η of the form η = (x + y
√
a2 + 4b)/(2|β|1/2), where

x and y are integers and β is a factor of b. Define the conjugate η̄ of any such η to be the
number η̄ = (x − y

√
a2 + 4b)/(2|β|1/2). Let W denote the set of real numbers η of the form

just described which satisfy ηη̄ = ±1.
Let φ̂ = φ/

√
b and ψ̂ = ψ/

√
b. Then φ̂, ψ̂ ∈ W. The following lemma generalizes Theorem

243 in [1].

Lemma 1.2. φ̂ is the smallest element of W which is greater than 1.

Proof. Suppose η = (x+ y
√
a2 + 4b)/(2|β|1/2) ∈ W satisfies

1 < η ≤ φ̂. (1.3)

Since ηη̄ = ±1, we have that

−1 < η̄ < 1. (1.4)

By adding and subtracting the two inequalities (1.3) and (1.4), we get

0 < η + η̄ < φ̂+ 1 and (1.5)

0 < η − η̄ < φ̂+ 1. (1.6)

Since (a+ 2
√
b)2 ≤ 2(a2 + 4b), it follows that φ̂ + 1 = (a + 2

√
b+

√
a2 + 4b)/(2

√
b) ≤ (

√
2 +

1)
√
a2 + 4b/(2

√
b). So, by (1.6), we have 0 < y

√

b/|β| < (
√
2 + 1)/2 <

√
2, which implies

y = 1 = b/|β| and η = (x+
√
a2 + 4b)/(2|β|1/2). Combining (1.3) and (1.5), we get 0 < x ≤ a.

Now, ηη̄ = ±1 implies x2 = a2 +4b± 4|β|, so we must have x = a and |β| = b, i.e., η = φ̂. �

Our strategy in the results to come will involve factoring out any factors of b which are
squares. We will then appeal to the following lemma which treats the square-free case.

Lemma 1.3. Suppose b has no factors, other than 1, which are squares. Suppose |β| is a

factor of b. If n ∈ N is such that (a2 + 4b)n2 + 4β is a square, then there exists r ∈ N such

that b⌊r/2⌋n = Rr and β = (−b)r (mod 2).
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Proof. Let n be a non-negative integer satisfying (a2 + 4b)n2 + 4β = w2 for some positive

integer w and a factor β of b. Then ǫ := (w + n
√
a2 + 4b)/(2|β|1/2) is an element of W.

Choose a positive integer r so that φ̂r−1 < ǫ ≤ φ̂r. Then ǫφ̂1−r satisfies 1 < ǫφ̂1−r ≤ φ̂. We
will use Lemma 1.2 to deduce that ǫφ̂1−r = φ̂, but we must first show that ǫφ̂1−r ∈ W.

Let r0 = r (mod 2). It is straightforward to verify that ±φ̂1−r = ψ̂r−1 can be written in

the form (x+ y
√
a2 + 4b)/(2b(1−r0)/2), where x and y are integers. So we have

ǫψ̂r−1 =
wx+ (a2 + 4b)ny + (nx+ wy)

√
a2 + 4b

4|β|1/2b(1−r0)/2
.

Showing ǫφ̂1−r ∈ W amounts to showing that the quantities wx + (a2 + 4b)ny and nx + wy
are each divisible by 2β1−r0 .

On the one hand ψ̂r can be written in the form (x′+ y′
√
a2 + 4b)/(2br0/2), but on the other

hand,

ψ̂r = ψ̂r−1ψ̂ =
(ax− (a2 + 4b)y)− (x− ay)

√
a2 + 4b

4b(1−r0+1)/2
.

Since a2 + 4b is not a perfect square, it must be the case that the quantities ax− (a2 + 4b)y
and x− ay are each divisible by 2b1−r0 .

We know that w2 − n2(a2 + 4b) = 4β. Thus w and an must have the same parity. To show
that wx+ (a2 + 4b)ny and nx+ wy are both even, we consider four cases: (i) If w and n are
both even then we are done. (ii) If w is even but n is odd, then a must be even, and so x
must be even since x − ay is even, and we are done. (iii) If w and n are both odd, then a is
odd. Since x− ay is even, x and y must have the same parity, and we are done. (iv) It is not
possible that w is odd and n is even.

Now suppose r0 = 0. We must show that wx+ (a2 + 4b)ny and nx+ wy are each divisible
by 2β. From w2 − n2(a2 + 4b) = 4β, we know β | w2, and since β has no square factors, it
must be the case that β | w. Since β divides both a and x − ay, we know that β | x. It
follows that β divides wx+ (a2 +4b)ny and nx+wy. The case where β is odd is simple. The
terms wx+ (a2 + 4b)ny and nx+ wy must both be divisible by 2β since they are both even.
Consider the alternative case where β is even. It is clear that 2β divides wx + (a2 + 4b)ny.

Let x̂ = x/β, â = a/β, b̂ = b/β, and ŵ = w/β. Now all that is left to show is that nx̂+ ŵy
is even. From w2 − n2(a2 + 4b) = 4β, we have n2âa ≡ ŵw (mod 4). We consider four cases,
as above: (i) If ŵ and n are both even, then we are done. (ii) Suppose ŵ is even but n is
odd. Then âa ≡ ŵw ≡ 0 (mod 4). Since β has no square factors, β 6≡ 0 (mod 4). It follows
that â is even. Since x− ay is divisible by 2β, we know x̂− ây is even. So x̂ is even, and we
are done. (iii) Suppose ŵ and n are both odd. Then, since β has no square factors, w 6≡ 0
(mod 4). From n2âa ≡ ŵw 6≡ 0 (mod 4), it follows that â is odd. Then since x̂− ây is even, x̂
and y have the same parity, so we are done. (iv) It is not possible that ŵ is odd and n is even.
Indeed, as mentioned in case (iii), w 6≡ 0 (mod 4), so n2âa ≡ ŵw 6≡ 0 (mod 4). In summary,
we have demonstrated in this and the previous paragraph that wx+ (a2 +4b)ny and nx+wy
are each divisible by 2β1−r0 .

We conclude that ǫφ̂1−r = ±ǫψ̂r−1 has the form (x′′+y′′
√
a2 + 4b)/(2|b/β|1/2) when r0 = 0,

or the form (x′′ + y′′
√
a2 + 4b)/(2|β|1/2) when r0 = 1. Thus ǫφ̂1−r is in W and satisfies

1 < ǫφ̂1−r ≤ φ̂, so Lemma 1.2 tells us that ǫφ̂1−r = φ̂. If r0 = 0, then a +
√
a2 + 4b =

|β|1/2(x′′ + y′′
√
a2 + 4b), which implies |β|1/2 = y′′ = 1. If r0 = 1, then a +

√
a2 + 4b =

|b/β|1/2(x′′+y′′
√
a2 + 4b), which implies |b/β|1/2 = y′′ = 1. It follows that |β| = br0 . Moreover,
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ǫφ̂1−r = φ̂ implies that ǫ = φ̂r. Therefore we may write

ǫ =
w + n

√
a2 + 4b

2br0/2
=

1

2

[

(φ̂r + ψ̂r) +
φ̂r − ψ̂r

√
a2 + 4b

√

a2 + 4b

]

.

It is easy to establish the fact that br0/2(φ̂r + ψ̂r) is an integer z by induction. Binet’s formula

(1.2) gives Rr = b(r−1)/2(φ̂r − ψ̂r)/(φ̂ − ψ̂) = br/2(φ̂r − ψ̂r)/
√
a2 + 4b. Substituting these into

the above relation gives

w + n
√

a2 + 4b = z + b−r/2+r0/2Rr

√

a2 + 4b = z + b−⌊r/2⌋Rr

√

a2 + 4b.

Since a2 + 4b is not a square, it follows that n = b−⌊r/2⌋Rr.
We have also shown that |β| = br0 = br (mod 2), so the only possible values of β are ±1 or ±b.

We will now show that, unless b = 1, the values β = −1 and β = b are not possible. Suppose
n were a number which made (a2 + 4b)n2 + 4β a square for β = −1 or β = b. According to

what we have shown above, there exists r ∈ N such that n = b−⌊r/2⌋Rr. According to part (1)
of Proposition 1.4 below, such a value of n makes (a2 + 4b)n2 + 4β′ a square, where β′ = −β.
Consider integers p = [(a2 +4b)n2 +4β]1/2 and q = [(a2 +4b)n2 +4β′]1/2. Then p2 − q2 = 8β.
Since b has no square factors, it follows from the definitions of p and q that β must divide
both p and q. Put p̃ = p/β and q̃ = q/β. Then p̃2 − q̃2 = 8/β ∈ Z+. If β is 8, 4, or 2, then
it is easy to verify that there are no solutions p̃, q̃. If β = ±1, then the only solutions are
(p̃, q̃) = (3, 1) or (p̃, q̃) = (1, 3) and each of these imply a = b = n = 1. In the a = b = n = 1
case, n = 1 = R1 makes (a2+4b)n2+4(−1) a square and n = 1 = R2 makes (a2+4b)n2+4(1)
a square. So, in all possible cases, we have β = (−b)r (mod 2). �

The following result characterizes terms of the sequence {Ri} as the set of non-negative
integers which make (a2+4b)n2−4b or (a2+4b)n2+4 a square. It generalizes Solution H-187
in [3].

Proposition 1.4. Let n be a non-negative integer. Then the following two facts hold.

(1) If b⌊r/2⌋n = Rr for some r ∈ N, then (a2 + 4b)n2 + 4(−b)r (mod 2) is a square.

(2) If (a2 + 4b)n2 + 4(−b)r0 is a square for some r0 ∈ {0, 1}, then b⌊r/2⌋n = Rr for some

r ∈ N satisfying r (mod 2) = r0.

Proof. Suppose b⌊r/2⌋n = Rr. Then from Cassini’s identity (1.1) we have

(bRr−1 +Rr+1)
2 = (bRr−1 −Rr+1)

2 + 4bRr−1Rr+1

= (a2 + 4b)R2
r + (−1)r4br

= (a2 + 4b)(b⌊r/2⌋n)2 + (−1)r4br

= br−r0
[

(a2 + 4b)n2 + 4(−b)r0
]

.

(1.7)

A straightforward induction argument shows that b⌊r/2⌋ is a factor of Rr for all r. It follows
that (a2 + 4b)n2 + 4(−b)r0 = (bRr−1 +Rr+1)

2/br−r0 is a square. This proves the first part of
the proposition.

If b has no square factors other than 1, then the second part of the proposition follows from
Lemma 1.3. Otherwise, let z be the largest positive integer such that z2 is a factor of b. Let
b̃ = b/z2 and ã = a/z. Suppose n is a positive integer which makes (a2 + 4b)n2 + 4(−b)r0 a
perfect square for some r0 ∈ {0, 1}.

First suppose that r0 = 0. Then (ã2 + 4b̃)(zn)2 + 4 is a perfect square. It follows from

Lemma 1.3 that b̃⌊r/2⌋(zn) = R̃r, where r is an even positive integer and R̃r is an element of
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the sequence satisfying R̃i+2 = ãR̃i+1 + b̃R̃i and (R̃0, R̃1) = (0, 1). It is easy to verify that

Rr = zr−1R̃r. It follows that Rr = zr−1b̃r/2(zn) = br/2n.

Next suppose that r0 = 1. Then (ã2 + 4b̃)n2 − 4b̃ is a perfect square. It follows from

1.3 that b̃⌊r/2⌋n = R̃r for some positive odd integer r. Since Rr = zr−1R̃r, we know Rr =
zr−1b̃(r−1)/2n = b(r−1)/2n. We have shown that Rr = b⌊r/2⌋n where r (mod 2) = r0. �

We are now in a position to prove the main theorem of the paper.
Proof of Theorem 1.1. First of all, notice that for any even integer r ≥ 0 we have

R

(

Rr

Rr+1

)

=
RrRr+1

R2
r+1 − aRrRr+1 − bR2

r

=
RrRr+1

b(Rr+1Rr−1 −R2
r)

=
RrRr+1

(−b)r ,

where the denominator was simplified in the last equality using (1.1). As mentioned in the

proof of Proposition 1.4, Rr is a multiple of b⌊r/2⌋ for any nonegative integer r, so RrRr+1 is
a multiple of br. It follows that R(Rr/Rr+1) is an integer

Next assume R(x) = k ∈ Z for some rational number x ∈ I = (ψ/b,−ψ/b). We must have
x ≥ 0 since R(ψ/b) = −1/(2a) and R′(x) = (1 + bx2)/(1 − ax− bx2)2 > 0. Solving R(x) = k
for x gives

x =
1

2bk

(

−(ak + 1) +
√

(ak + 1)2 + 4bk2
)

. (1.8)

In order for x ∈ Q, there must exist a positive integer c such that 4bk2 = c2 − (ak + 1)2 =
[c− (ak+1)][c+(ak+1)]. Proceeding as in the derivation of Euclid’s formula for Pythagorean
triples, we choose positive integers m and n such that

m

n
=

2bk

c− (ak + 1)
=
c+ (ak + 1)

2k
. (1.9)

It follows that
c

bk
=
m2 + bn2

bmn
and

ak + 1

bk
=
m2 − bn2

bmn
.

Assume that m and n are chosen to be co-prime. Then

m2 + bn2 = βc and mn = βk and m2 − bn2 = β(ak + 1), (1.10)

where ±β = gcd(m2 ± bn2, bmn) = gcd(b,m). Then we have m2 − amn − bn2 = β. Solving
for m gives

2m = an+
√

(a2 + 4b)n2 + 4β.

Let ζ2 be the largest square factor of β and let β̃ = β/ζ2. Let z be the largest positive integer

such that z2 is a factor of b/ζ2 and let b̃ = b/(ζ2z2) and ã = a/(ζz). Then

2m = an+ ζ

√

(ã2 + 4b̃)(zn)2 + 4β̃.

Lemma 1.3 tells us that there exists a non-negative integer r such that b̃⌊r/2⌋zn = R̃r, where
R̃r is given by R̃r+2 = ãR̃r+1 + b̃R̃r with (R̃0, R̃1) = (0, 1), and also β̃ = (−b̃)r (mod 2). Using
(1.7) we see that

√

(ã2 + 4b̃)(zn)2 + 4β̃ = b̃−⌊r/2⌋(b̃R̃r−1 + R̃r+1) = b̃−⌊r/2⌋(2R̃r+1 − ãR̃r).

It is easy to verify that Rr = (zζ)r−1R̃r. If r is even, we have n = ζb−r/2Rr and

2m = an+ ζb−r/2(2Rr+1 − aRr),

so m = ζb−r/2Rr+1. If r is odd, we have n = z−1b(1−r)/2Rr and

2m = an+ z−1b(1−r)/2(2Rr+1 − aRr),
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so m = z−1b(1−r)/2Rr+1. Therefore, regardless of the parity of r, substituting (1.10) into (1.8)
shows that x = n/m = Rr/Rr+1.

Finally we show that the condition x ∈ I requires that r is even. Observe that

ψ

b
+

Rr

Rr+1
=
ψ

b
+

φr − ψr

φr+1 − ψr+1
=
ψφr+1 − ψψr+1 + b(φr − ψr)

b(φr+1 − ψr+1)
=

(φ− ψ)ψr+1

b(φr+1 − ψr+1)
,

where in the last equality we used the fact that φψ = −b. By the definitions of φ and ψ, we
have φs − ψs > |φ|s − |ψ|s > 0 for all s ∈ N, so the sign of ψ/b+Rr/Rr+1 matches the sign of
ψr+1, which is negative when r is even and positive when r is odd. Since x ∈ I, we must have
Rr/Rr+1 < −ψ/b. Thus, r is even. �

We conclude this section by pointing out that the requirement b | a in Theorem 1.1 is
necessary to ensure the rational solutions to R(x) ∈ Z are of the form x = R2i/R2i+1. To see
this, suppose that R(Rr/Rr+1) is an integer when r is even. Since R(R2/R3) = b−2a(a2 + b),
there exists an integer k such that a(a2 + b) = kb2. Then, for any integer m, we have
(a3 +mab) = kb2 + (m− 1)ab. Therefore, from the first equation in the proof of Theorem 1.1,
we have

b4R(R4/R5) = a(a2 + 2b)(a4 + 3a2b+ b2)

= a(a3 + 2ab)(a3 + 3ab) + (a3 + 2ab)b2

= ak2b4 + kb4 + 3ka2b3 + ab3 + 2a3b2

= b4(ak2 + k) + b2(3ka2b+ ab+ 2a3)

= b4(ak2 + 2k) + b2(a3 + 3ka2b)

= b4(ak2 + 3k) + b2(3ka− 1)ab.

It follows that a(3ka − 1) is divisible by b. From a(a2 + b) = kb2, we know that b | a3, so
gcd(b, 3ka − 1) = 1. Therefore it must be the case that b | a.

Lucas and Pell-Lucas Sequences

In this final section, we touch on the situation where (R0, R1) 6= (0, 1) by considering a couple
examples. If (a, b,R0, R1) = (1, 1, 0, 1) or (a, b,R0, R1) = (1, 1, 2, 1), then {Ri} becomes the
Fibonacci sequence {Fi} or Lucas sequence {Li}, respectively. Let L(x) denote the generating
function for the Lucas sequence. The next proposition answers affirmatively the question
posed in [2], asking whether x = F2r/F2r+1 and x = L2r+1/L2r+2 constitute the only rational
numbers x which lead to L(x) ∈ Z, provided we also include x = −1/2.

Theorem 1.5. The rational numbers x ∈ I for which L(x) is an integer are precisely those

of the form −1/2, F2i/F2i+1, or L2i+1/L2i+2, where i ∈ N.

Proof. Assume x ∈ I. Notice that 1 < L(x) < 3 on the interval (ψ, 0] and L is increasing on
the interval (0,−ψ). L(x) = 2 has the two solutions x = −1/2 and x = 0 = F0/F1, so we only
need to show that x is a positive rational number for which L(x) is a positive integer > 2 if
and only if x = L2i−1/L2i or x = F2i/F2i+1 for some positive integer i.

Suppose k is a positive integer > 2 and x ∈ I ∩Q is a positive solution to L(x) = k. Then

x =
(1− k) +

√

(k − 1)2 − 4k(2 − k)

2k
.
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So (k − 1)2 − 4k(2 − k) = 5(k − 1)2 − 4 is a square. It follows from the details of Solution
H-187 in [3], or from Proposition 1.4 above, that k − 1 is a Fibonacci number with an odd
index. The index must be at least 3 because k ≥ 1.

Now, since L(x) is increasing on the interval (0,−ψ), there exists at most one solution to
L(x) = k. Thus, it suffices to show that for all i ∈ Z+

L (L2i−1/L2i) = F4i−1 + 1 and L (F2i/F2i+1) = F4i+1 + 1. (1.11)

The first equality follows from L (L2i−1/L2i) = F2i−1 · L2i [2]. By using the closed form of
Lucas numbers Li = φi + ψi and the identity φψ = −1, we get

F2i−1 · L2i =
(φ2i−1 − ψ2i−1)(φ2i + ψ2i)

φ− ψ
=
φ4i−1 − ψ4i−1 − ψ + φ

φ− ψ
= F4i−1 + 1.

The second equality follows from L (F2i/F2i+1) = F2i+1(F2i+1 + F2i−1) [2]. This leads to

F2i+1(F2i+1 + F2i−1) =
(φ4i+1 − ψ4i+1)(φ− ψ) + (φ− ψ)2

(φ− ψ)2
= F4i+1 + 1.

�

This result can be adapted to treat the Pell and Pell-Lucas sequences given by (a, b,R0, R1) =
(2, 1, 0, 1) and (a, b,R0, R1) = (2, 1, 2, 2), and denoted {Pi} and {Qi}, respectively. Let Q(x)
denote the generating function for the Pell-Lucas sequence. Then we have the following propo-
sition, whose proof we omit since it is virtually identical to the proof of Theorem 1.5.

Theorem 1.6. The rational numbers x ∈ I for which Q(x) is a positive integer are the ones

of the form x = P2i/P2i+1 or x = Q2i+1/Q2(i+1) where i ∈ N.

It is natural to ask whether these results can be generalized to any initial values (R0, R1)
and any positive integers a, b with b | a. At this level of generality, proving statements
analogous to those above presents difficulties we have not been able to overcome. One may
also question whether the results of the previous section can be extended to hold for non-
positive integers a or b. The answer is yes, even though both the results and the proofs would
need to be modified slightly. One would need to account for sign changes in the terms Rr, and
consequently reconsider the situations in which Rr/Rr+1 ∈ I, as well as deal with the cases
in which φ and ψ are complex. For example, if a > 0, b < 0, and a2 + 4b > 0, the interval of
convergence I is (ψ/b,−ψ/b), but if a < 0, b < 0, and a2 + 4b > 0, it is (−φ/b, φ/b). Also, for
both of the two cases, all Ri/Ri+1’s fall into I and result in R(Ri/Ri+1) ∈ Z. So, Theorem
1.1 would need to be adjusted accordingly. The adjustments needed to address these issues
appear to be purely technical and we do not believe they bring anything novel to the table.
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