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Abstract. As a neat application of Chebyshev polynomials of the first kind, we extend to
Fibonacci polynomials a complex recurrence studied by C. R. Diminnie. We then explore the
corresponding versions to Lucas, Pell, and Pell-Lucas polynomials, and extract the respective
number-theoretic versions. In addition, we pursue two interesting recurrences with Fibonacci,
Lucas, Pell, and Pell-Lucas implications.

1. Introduction

Gibonacci (generalized Fibonacci) polynomials gn(x) are defined by the recurrence gn(x) =
xgn−1(x) + gn−2(x), where g1(x) = a, g2(x) = b, a = a(x), b = b(x), and n ≥ 3. Clearly,
g0(x) = b − ax. When a = 1 and b = x, gn(x) = fn(x), the nth Fibonacci polynomial ; and
when a = x and b = x2+2, gn(x) = ln(x), the nth Lucas polynomial. In particular, gn(1) = Gn,
the nth gibonacci number ; fn(1) = Fn, the nth Fibonacci number; and ln(1) = Ln, the nth
Lucas number [1, 5].

Table 1 shows the first six Fibonacci and Lucas polynomials.

Table 1: First Six Fibonacci and Lucas Polynomials

n fn(x) ln(x)

1 1 x
2 x x2 + 2
3 x2 + 1 x3 + 3x
4 x3 + 2x x4 + 4x2 + 2
5 x4 + 3x2 + 1 x5 + 5x3 + 5x
6 x5 + 4x3 + 3x x6 + 6x4 + 9x2 + 2

Pell polynomials pn(x) and Pell-Lucas polynomials qn(x) are defined by pn(x) = fn(2x) and
qn(x) = ln(2x), respectively. The Pell numbers Pn and Pell-Lucas numbers Qn are given by
Pn = pn(1) and 2Qn = qn(1), respectively [4, 6].

Table 2 shows the first six Pell and Pell-Lucas polynomials, and Table 3 the first 10 Pell
and Pell-Lucas numbers.

Table 2: First Six Pell and Pell-Lucas Polynomials

n pn(x) qn(x)

1 1 2x
2 2x 4x2 + 2
3 4x2 + 1 8x3 + 6x
4 8x3 + 4x 16x4 + 16x2 + 2
5 16x4 + 12x2 + 1 32x5 + 40x3 + 10x
6 32x5 + 32x3 + 6x 64x6 + 96x4 + 36x2 + 2
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Table 3: First 10 Pell and Pell-Lucas Numbers
n 1 2 3 4 5 6 7 8 9 10

Pn 1 2 5 12 29 70 169 408 985 2378
Qn 1 3 7 17 41 99 239 577 1393 3363

1.1. Binet-like Formulas. Gibonacci polynomials can also be defined by the Binet-like for-
mula

gn =
cαn − dβn

α− β
,

where α = α(x) and β = β(x) are solutions of the characteristic equation t2 − xt− 1 = 0, c =
c(x) = a+ (ax− b)β, d = d(x) = a+ (ax− b)α, and n ≥ 0. In particular,

fn(x) =
αn − βn

α− β
,

where α = α(x) =
x+∆

2
and β = β(x) =

x−∆

2
= 0,∆ = ∆(x) =

√

x2 + 4, and n ≥ 0 [1, 5].

Clearly, αβ = −1.
Likewise,

pn(x) =
γn − δn

γ − δ
,

γ = γ(x) = x + D and δ = δ(x) = x − D are the solutions of the equation t2 − 2xt − 1 =

0,D = D(x) =
√
x2 + 1, and n ≥ 0 [4, 6]. Clearly, γδ = −1.

Chebyshev polynomials of the first kind Tn(x) are defined by the recurrence Tn+2 = 2xTn+1(x)−
Tn(x), where T0(x) = 1, T1(x) = x, and n ≥ 0 [6, 7]. Table 4 shows the Chebyshev polynomials
Tn(x), where 0 ≤ n ≤ 7.

Table 4: Chebyshev polynomials Tn(x)

n Tn(x) n Tn(x)

0 1 4 8x4 − 8x2 + 1
1 x 5 16x5 − 20x3 + 5x
2 2x2 − 1 6 32x6 − 48x4 + 18x2 − 1
3 4x3 − 3x 7 64x7 − 112x5 + 56x3 − 7x

To make our exposition simple, short, and elegant, we employ a slightly modified version of
the polynomials Tn(x). To this end, consider the polynomials cn(x), defined by the recurrence
cn(x) = xcn−1(x)− cn−2(x), where c0(x) = 2, c1(x) = x, and n ≥ 2. Then

c2(x) = x2 − 2 c3(x) = x3 − 3x

c4(x) = x4 − 4x2 + 2 c5(x) = x5 − 5x3 + 5x

c6(x) = x6 − 6x4 + 9x2 − 2 c7(x) = x7 − 7x5 + 14x3 − 7x
...

Clearly, cn(x) = 2Tn(x/2) = inln(−ix), where i =
√
−1. For example, 2T5(x/2) =

2[16(x/2)5 − 20(x/2)3 + 5(x/2)] = x5 − 5x3 + 5x = c5(x).
The polynomials cn(x) satisfy a charming property:

cn

(

y +
1

y

)

= yn +
1

yn
, (1.1)

where y 6= 0 and n ≥ 0; this follows by induction.
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1.2. A Diminnie Delight. In 1994, C. R. Diminnie proposed the following spectacular prob-
lem [2]. Solve the recurrence

dn+1 = 5dn(5d
4
n − 5d2n + 1), (1.2)

where d0 = 1 and n ≥ 0. A few months later, A. Sinefakopoulos provided a beautiful solution
to the problem [3, 8]: dn = F5n .

We can extend this problem to Fibonacci polynomials. In the interest of brevity, clarity,
and convenience, we drop the argument from the functional notation when omitting it causes
no ambiguity. For example, gn will mean gn(x).

2. Fibonacci Extensions

Solve the recurrence

an+1 = an(∆
4a4n − 5∆2a2n + 5), (2.1)

where an = an(x), a0 = 1, and n ≥ 0.
Then,

a0 = 1

a1 = x4 + 3x2 + 1

a2 = x24 + 23x22 + 231x20 + 1330x18 + 4845x16 + 11628x14 + 18564x12

+ 19448x10 + 12870x8 + 5005x6 + 1001x4 + 78x2 + 1

a3 = x124 + 123x122 + 7381x120 + · · · + 1,

a polynomial of degree 124 and with 63 terms.
By looking at these four initial values of an, it does not appear to be easy to conjecture a

formula for an. But, here is an interesting observation: a0 = f50 , a1 = f51 , and a2 = f52 . This,
coupled with the solution dn = F5n of recurrence (2.1), helps us conjecture that an = f5n ,
where n ≥ 0.

To confirm this formula, we rely on the polynomials cn(x). To this end, first we establish a
close relationship between an+1 and c5. Using recurrence (2.1), we have

∆an+1 = ∆5a5n − 5∆3a3n + 5∆an

= (∆an)
5 − 5(∆an)

3 + 5(∆an)

= c5(∆an).

Consequently, we claim that the solution of the recurrence ∆an+1 = c5(∆an) is an = f5n .
More generally, we will now confirm that the solution of the recurrence

∆an+1 = cm(∆an) (2.2)

is an = fk·mn , where a0 = fk, k and m are odd positive integers, k 6= m,m ≥ 3 and n ≥ 0.
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Proof. Clearly, the formula is true when n = 0. Assume, it is true for an arbitrary integer
n ≥ 0. Since k and m are odd, by the Binet-like formula for fk·mn , we then have

∆an+1 = cm(∆fk·mn)

= cm

(

αk·m
n − βk·m

n

)

= cm

(

αk·mn

+
1

αk·mn

)

= αk·m
n+1

+
1

αk·mn+1

= αk·mn+1 − βk·mn+1

an+1 = fk·mn+1 .

So the formula works for n + 1 also. Thus, by induction, formula (2.2) works for all n ≥ 0;
that is, the solution of recurrence (2.2) is an = fk·mn . �

For example, with k = 3,m = 5, and a0 = f3 = x2 + 1, we have

a1 = a0(∆
4a40 − 5∆2a20 + 5)

= (x2 + 1)[(x2 + 4)2(x2 + 1)4 − 5(x2 + 4)(x2 + 1)2 + 5]

= x14 + 13x12 + 66x10 + 165x8 + 210x6 + 126x4 + 28x2 + 1

= f3·5.

In particular, the solution of recurrence (2.1) is an = f5n , where n ≥ 0, as conjectured.
Clearly, the solution of recurrence (1.2) follows from this.

Suppose we let m = 3 in recurrence (2.2). Since c3(x) = x3 − 3x,

∆an+1 = c3(∆an)

an+1 = ∆2a3n − 3an. (2.3)

The solution of this recurrence is an = fk·3n, where a0 = fk and n ≥ 0.
Likewise, when m = 7, we get

an+1 = ∆6a7n − 7∆4a5n + 14∆2a3n − 7an; (2.4)

its solution is an = fk·7n, where a0 = fk and n ≥ 0.
Obviously, we can continue this procedure for any odd integer ≥ 9.
In particular, let x = 1 = k. Then the solutions of the recurrences an+1 = 5a3n − 3an and

an+1 = 125a7n − 175a5n + 70a3n − 7an are an = F3n and an = F7n , respectively.
As we can predict, the polynomial extension (2.1) has Pell consequences.

2.1. Pell Extensions. Let bn = bn(x) = an(2x), b0 = 1, and n ≥ 0. Then recurrences (2.3),
(2.1), and (2.4) yield

bn+1 = bn(4D
2b2n − 3) (2.5)

bn+1 = bn(16D
4b4n − 20D2b2n + 5) (2.6)

bn+1 = bn(64D
6b6n − 112D4b4n + 56D2b2n − 7), (2.7)

respectively. The corresponding solutions are bn = pk·3n , bn = pk·5n , and bn = pk·7n , respec-
tively.

When x = 1 = k, these yield the solutions bn = P3n , bn = P5n , and bn = P7n , respectively.
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For example, b1 = 29 = P51 ; so b2 = 29(64 · 294 − 40 · 292 + 5) = 1, 311, 738, 121 = P52 , as
expected.

3. Lucas Counterparts

Recall that the solutions of recurrences (1.2), (2.3), and (2.4) pivoted on the polynomial
cm(x), where m is odd and ≥ 3. Interestingly, focusing on cm(x) with m even and ≥ 2 yields
equally rewarding results.

For example, consider the recurrence

an+1 = a4n − 4a2n + 2, (3.1)

where an = an(x), a1 = l4e, e is a positive integer such that 4 6 | e, and n ≥ 1.
Clearly, an+1 = c4(an). Using the Binet-like formula for le·4n , property (1.1), and induction,

we can show that an = le·4n .
For example, let e = 1. Then a1 = l4 = x4 + 4x2 + 2, and

a2 = a41 − 4a21 + 2

= (x4 + 4x2 + 2)4 − 4(x4 + 4x2 + 2)2 + 2

= x16 + 16x14 + 104x12 + 352x10 + 660x8 + 672x6 + 336x4 + 64x2 + 2

= l42 .

Similarly, the recurrences

an+1 = a2n − 2, a1 = l2e (2 6 | e); (3.2)

an+1 = a6n − 6a4n + 9a2n − 2, a1 = l6e (6 6 | e) (3.3)

yield the abbreviated recurrences an+1 = c2(an) and an+1 = c6(an), respectively, where an =
an(x). Correspondingly, we have an = le·2n and an = le·6n , respectively.

In particular, let x = 1 = e. Then L2n , L4n , and L6n are the solutions of the recurrences
(3.2), (3.1), and (3.3), respectively; M. Klamkin (1921–2004) found these solutions [8].

3.1. Pell-Lucas Byproducts. Since lk(2x) = qk(x), it follows from recurrences (3.2), (3.1),
and (3.3) that

bn+1 = b2n − 2, b1 = q2e (2 6 | e);
bn+1 = b4n − 4b2n + 2, b1 = q4e (4 6 | e); (3.4)

bn+1 = b6n − 6b44 + 9b2n − 2, b1 = q6e (6 6 | e),

respectively, where bn = an(2x). The corresponding solutions are bn = qe·2n, bn = qe·4n, and
bn = qe·6n , respectively.

In particular, let x = 1 = e. Then bn = 2Q2n , bn = 2Q4n , and bn = 2Q6n , respectively.
For example, consider recurrence (3.4), where b1 = 34 = 2Q4. Then b2 = 344 − 4 · 342 +2 =

1, 331, 714 = 2Q42 .

4. Two Charming Recurrences

Next we study two equally delightful recurrences with Fibonacci and Pell implications.
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4.1. Recurrence A. Consider the recurrence

xn+1 = xn(∆
2x2n + 3), (4.1)

where x0 = fe, e is a positive even integer, and n ≥ 0.
Suppose e = 2. Then x0 = f2 = x and x1 = x[(x2 + 4)x2 + 3] = x5 + 4x3 + 3x = f2·3.
More generally, we conjecture that xn = fe·3n , where n ≥ 0. It is clearly true when n = 0.

Assume it is true for an arbitrary integer n ≥ 0. Then

xn+1 = ∆2f3
e·3n + 3fe·3n

∆xn+1 =
(

αe·3n − βe·3n
)3

+ 3
(

αe·3n − βe·3n
)

= αe·3n+1 − βe·3n+1 − 3(αβ)e·3
n
(

αe·3n − βe·3n
)

+ 3
(

αe·3n − βe·3n
)

= αe·3n+1 − βe·3n+1

xn+1 = fe·3n+1.

Thus, by induction, the conjecture works for all n ≥ 0.
For example, let e = 4. Then x0 = f4 = x3 + 2x. So

x1 = x0(∆
2x20 + 3)

= (x3 + 2x)[(x2 + 4)(x3 + 2x)2 + 3]

= x11 + 10x9 + 36x7 + 56x5 + 35x3 + 6x

= f4·31 .

In particular, the solution of the recurrence xn+1 = xn(5x
2
n+3) is xn = Fe·3n , where x0 = Fe

and n ≥ 0.

4.2. Pell Byproducts. It follows from recurrence (4.1) that the solution of the recurrence
xn+1 = xn(4D

2x2n + 3) is xn = pe·3n , where x0 = pe and n ≥ 0. In particular, the solution of
the recurrence xn+1 = xn(8x

2
n + 3) is xn = Pe·3n .

Next we study a similar recurrence which also has interesting consequences.

4.3. Recurrence B. Consider the recurrence

zn+2 = zn+1(∆
2z2n + 2), (4.2)

where z1 = f2k, z2 = f4k, k is an odd positive integer, and n ≥ 1.
When k = 1, z1 = f2 = x and z2 = f4 = x3 + 2x. So

z3 = (x3 + 2x)[(x2 + 4)x2 + 2]

= x7 + 6x5 + 10x3 + 4x

= f23 .

More generally, it follows by induction that the solution of recurrence (4.2) is zn = fk·2n,
where n ≥ 1.
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For example, let k = 3. Then z1 = f6 = x5 + 4x3 + 3x and z2 = f12 = x11 + 10x9 + 36x7 +
56x5 + 35x3 + 6x. Consequently,

z3 = z2(∆
2z21 + 2)

= (x11 + 10x9 + 36x7 + 56x5 + 35x3 + 6x)[(x2 + 4)(x5 + 4x3 + 3x)2 + 2]

= x23 + 22x21 + 210x19 + 1140x17 + 3876x15 + 8568x13 + 12376x11

+ 11440x9 + 6435x7 + 2002x5 + 286x3 + 12x

= f3·23 .

Suppose we let x = 1 in recurrence (4.2). Then the solution of the recurrence zn+2 =
zn+1(5z

2
n + 2) is zn = Fk·2n , where z1 = F2k, z2 = F4k, and n ≥ 0.

Recurrence (4.1) also has Pell implications.

4.4. Pell Consequences. The solution of the recurrence zn+2 = 2zn+1(2D
2z2n + 1) is zn =

pk·2n , where z1 = p2k, z2 = p4k, and n ≥ 0. Consequently, the solution of the recurrence
zn+2 = 2zn+1(4z

2
n + 1) is zn = Pk·2n , where z1 = P2k, z2 = P4k, and n ≥ 0.

For example, let k = 5. Then z1 = P10 = 2, 378 and z2 = P20 = 15, 994, 428. So z3 =
2z2(4z

2
1 + 1) = 2 · 15, 994, 428(4 · 23782 + 1) = 723, 573, 111, 879, 672 = P40.

4.5. Lucas Counterparts. Interestingly, recurrences (4.1) and (4.2) have their own Lucas
counterparts:

un+1 = un(u
2
n − 3), (4.3)

where u0 = le and n ≥ 0; and
vn+2 = vn+1(v

2
n − 2)− 2, (4.4)

where v1 = l2k, v2 = l4k, and n ≥ 1.
Their solutions are un = le·3n and vn = lk·2n , respectively. Their proofs follow similarly, so

we omit them.
For example, let e = 4. Then

u1 = l4(l
2
4 − 3)

= x12 + 12x10 + 54x8 + 112x6 + 105x4 + 36x2 + 2

= ll
4·31

;

likewise,

v3 = l12(l
2
6 − 2)− 2

= x24 + 24x22 + 252x20 + 1520x18 + 5814x16 + 14688x14

+ 24752x12 + 27456x10 + 19305x8 + 8008x6 + 1716x4 + 144x2 + 2

= l3·23 .

4.6. Pell-Lucas Versions. It follows from recurrences (4.3) and (4.4) that the solutions of
the recurrences

un+1 = un(u
2
n − 3), u0 = qe; (4.5)

and
vn+2 = vn+1(v

2
n − 2)− 2, v1 = q2k and v2 = q4k (4.6)

are un = qe·3n and vn = qk·2n, respectively.
In particular, let x = 1. Then the solutions of the recurrences (4.3), (4.4), (4.5), and (4.6)

are un = Le·3n , vn = Lk·2n , un = 2Qe·3n , and vn = 2Qk·2n , respectively.

FEBRUARY 2017 19



THE FIBONACCI QUARTERLY

For example, when k = 1,

v5 = v4(v
2
3 − 2)− 2

= 1, 331, 714(11542 − 2)− 2

= 2 · 886, 731, 088, 897
= 2Q25 .

Finally, we invite Fibonacci enthusiasts to interpret combinatorially the recurrences inves-
tigated in the article.
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