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Abstract. We examine the sequence (Tn)n≥1 of numbers: 1, 11, 61, 451, 3001, 20801,
141961, . . . given by Tn = F5n/(5Fn), where Fn is the Fibonacci number. Curious divisibility
properties are obtained including related conditions resembling a strong divisibility sequence.
In particular, we prove that all prime divisors of the numbers in this sequence end in one.
Another result asserts that each integral power of a number in the sequence is a divisor of
some other number in the sequence. Specifically, we prove that for any positive integers n
and k, the term

T (nT (nT (· · ·nT (n) · · · )))

with k occurrences of the number n is exactly divisible by T k
n .

1. Introduction

The Fibonacci sequence (Fn)n≥0 is defined by

F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2 for n ≥ 2.

It is probably regarded as one of the most studied integer sequences of all time because of
its rich and well-structured properties. The terms in the Fibonacci sequence are referred
to as the Fibonacci numbers. Their most intriguing characters are based on the number-
theoretic properties. For example, the Fibonacci sequence is a divisibility sequence in the
sense that Fm divides Fn whenever m divides n for all nonnegative integers m and n. Some
distinguished arithmetic properties of the Fibonacci sequence lie in the intricate structure of
its subsequences as illustrated by a previous work of the authors of this note. In [6], we define
a family of subsequences (Gk(n)) of the Fibonacci sequence as follows: for each nonnegative
integer n,1

G1(n) = Fn and Gk(n) = F (nGk−1(n)) for k ≥ 2.

One of the most basic properties states that the number F k
n exactly divides Gk(n) for all

positive integers k and n with n > 3. In this work, we find that this kind of dynamical
property is shared by at least one more sequence. The terms of this sequence are denoted by
Tn and defined as the quotient of Fibonacci numbers F5n/(5Fn) for each positive integer n.
The first few terms of this sequence are

1, 11, 61, 451, 3001, 20801, 141961.

We notice immediately that each term of this sequence seems to end in one. This sequence
appeared in [2] where the authors gave the Zeckendorf decomposition of each number in the
sequence. We are to examine number-theoretic properties of these numbers, including the
characters of their prime factorizations and related divisibility properties.

In the following discussion we recall the definition of exact divisibility as follows: a power
of integer ak is said to exactly divide an integer b, denoted ak ‖ b, provided that ak | b and

1The notations an and a(n) to denote the nth term of a sequence (an) are used interchangeably in this
paper.
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ak+1 ∤ b. We also recall the p-adic valuation vp(a) of a positive integer a to be the exponent
of the prime p in the prime factorization of a.

2. Entry Point Function Z(n)

For a positive integer n, we define Z(n) to be the so-called entry point of n in the Fibonacci
sequence as the first positive index m such that n | Fm. For example, Z(3) = 4 since F4 = 3
and Z(11) = 10 since F10 = 55 ≡ 0 (mod 11) and Fj 6≡ 0 (mod 11) for all 1 ≤ j ≤ 9.
Arithmetic properties of Z(n) are extensive and quite useful, including the generalization of
the relations and the examination of a specific case such as when n is prime or a power of
prime. Some of these results that are needed for this work are summarized in the following
lemma. Its comprehensive investigation can be found in [7].

Lemma 2.1. Let m and n be positive integers and p prime. Then the following statements

hold.

(1) n | Fm if and only if Z(n) | m.

(2) p ≡
(

p
5

)

(mod Z(p)), where
(

p
5

)

is the Legendre symbol of p with respect to 5.

3. Prime Divisors of Tn

We have observed earlier that the first few terms of the sequence (Tn) seem to end in one.
The following theorem shows that this is indeed the case for all terms of the sequence.

Theorem 3.1. Let n be a positive integer. Then

(1) gcd(Fn, Tn) = 1, and
(2) Tn ≡ 1 (mod 10).

Proof. This follows immediately from the relation

Tn = 5F 2
n(F

2
n + (−1)n) + 1. (3.1)

This relation is a result of a more general one given in [5] which states that

F(2q+1)n = Fn

q
∑

k=0

(−1)n(q+k) 2q + 1

q + k + 1
5k
(

q + k + 1

2k + 1

)

F 2k
n , n, q ≥ 0.

By letting q = 2, we obtain the identity (3.1), as required. �

We may characterize the prime divisors of the terms of (Tn) based on divisibility properties
of the entry point as follows.

Theorem 3.2. Let p be prime. Then p | Tn for some n if and only if p 6= 5 and 5 | Z(p).

Proof. Let p be prime. Assume that p | Tn for some n. By Theorem 3.1, we have p 6= 5 and
p ∤ Fn. Now since F5n = 5FnTn, we have p | F5n. By Lemma 2.1, we have Z(p) | 5n and
Z(p) ∤ n (from p ∤ Fn). Hence, 5 | Z(p).

For the converse, we assume that p 6= 5 and 5 | Z(p). Let n = Z(p)
5 . By the definition of

Z(p), we have p | F5n and p ∤ Fn. Since F5n = 5FnTn and p 6= 5, it follows that p | Tn.
�

Theorem 3.3. Let p be prime. Then p | Tn for some n if and only if p 6= 5, Z(p) | 5n, and
v5(Z(p)) = v5(n) + 1.
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Proof. Let p be prime. Assume that p | Tn for some n. Since F5n = 5FnTn, we obtain p | F5n.
By Theorem 3.1, we also obtain p 6= 5 and p ∤ Fn. Hence, by Lemma 2.1, Z(p) | 5n and
Z(p) ∤ n. Now since p | Tn, it follows from Theorem 3.2 that 5k ‖ Z(p) for some k ∈ N. Write
Z(p) = 5km1 and n = 5ℓn1, where 5 ∤ m1 and 5 ∤ n1. Then 5km1 | 5ℓ+1n1 and 5km1 ∤ 5ℓn1.
This yields k = ℓ+ 1. Since v5(Z(p)) = k and v5(n) = ℓ, the result follows.

For the converse, assume that p 6= 5 Z(p) | 5n, 5k ‖ Z(p), and 5k−1 ‖ n for some k ∈ N.
Since Z(p) | 5n, Lemma 2.1 implies that p | F5n. Since 5k ‖ Z(p) and 5k−1 ‖ n, it follows that
Z(p) ∤ n. Once again, Lemma 2.1 implies that p ∤ Fn. Now since p 6= 5 and F5n = 5FnTn, we
have p | Tn, as required. �

Theorem 3.4. Let p be prime such that p | Tn for some n. Then

p ≡ 1 (mod 10).

Proof. Let p be prime such that p | Tn for some n. By Theorem 3.1, we have p 6= 2. By
Theorem 3.2, we have 5 | Z(p). This implies Z(p) = 5n1 for some positive integer n1. By
Lemma 2.1, we obtain p ≡ ±1 (mod 5n1). This implies p ≡ ±1 (mod 5). By Lemma 2.1,
p ≡ 1 (mod 5n1). Since p is odd, this implies n1 is even. Hence, p = 10k+1 for some positive
integer k and the theorem follows. �

Remark 3.5. We note that the converse of Theorem 3.4 does not hold, i.e., not all primes

p ending in one are divisors of some Tn. In fact, consider the prime p = 211. By direct

computation, we have Z(p) = 42 and since 5 ∤ 42, Theorem 3.2 implies that 211 ∤ Tn for all n.

4. Almost Strong Divisibility Sequence

A sequence (an) of integers is said to be a strong divisibility sequence if gcd(am, an) =
agcd(m,n) for all m,n. The sequence an = an − bn where gcd(a, b) = 1 is a nontrivial example
of such sequence. Another well-known example includes the Fibonacci sequence. We show in
this section that the sequence (Tn) also possesses in some sense the quality of being a strong
divisibility sequence.

Lemma 4.1. Let m and n be positive integers such that m | n and v5(m) = v5(n). Then

Tm | Tn.

Proof. Since m | n and v5(m) = v5(n), there exist positive integers r, s, and ℓ such that
m = ℓr, n = ℓs, r | s, 5 ∤ r, and 5 ∤ s. Let p be a prime such that pk ‖ Tℓr. Then pk | F5ℓr

(by definition) and pk ∤ Fℓr (by Theorem 3.1). By Lemma 2.1, Z(pk) | 5ℓr and Z(pk) ∤ ℓr.
Since 5 ∤ r, the previous statement holds if and only if 5i ‖ Z(pk) and 5i−1 ‖ ℓ for some
i ∈ N. Now since 5 ∤ s and r | s, we have Z(pk) | 5ℓs and Z(pk) ∤ ℓs. Thus, by Lemma 2.1,
pk | F5ℓs and pk ∤ Fℓs. Now since, by Theorem 3.1, p 6= 5 and gcd(Fℓs, Tℓs) = 1, it follows
that pk | Tℓs. Hence, vp(Tm) ≤ vp(Tn). Since p was arbitrary, it follows that Tm | Tn and the
lemma follows. �

Lemma 4.2. gcd(Tm, Tn) | Tgcd(m,n) for all positive integers m and n.

Proof. Let d be a common divisor of Tm and Tn. It suffices to prove that d | Tgcd(m,n). If d = 1,
then the result is clear. Assume that d > 1. We have d | Tm and d | Tn. By the definition
of the sequence (Tn), we have d | F5m and d | F5n. Consequently, d | gcd(F5m, F5n). Since
(Fn) is a strong divisibility sequence, this implies d | Fgcd(5m,5n). Now since Fgcd(5m,5n) =
F5 gcd(m,n) = 5Fgcd(m,n)Tgcd(m,n), it follows that d | 5Fgcd(m,n)Tgcd(m,n). By Theorem 3.1,
we have gcd(d, 5) = 1 and gcd(d, Fm) = gcd(d, Fn) = 1, so that gcd(d, gcd(Fm, Fn)) = 1.
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Again, since (Fn) is a strong divisibility sequence, it follows that gcd(d, Fgcd(m,n)) = 1. Hence,
d | Tgcd(m,n) and the proof is complete. �

We are now ready to prove the theorem that characterizes the sequence (Tn) as an almost

strong divisibility sequence in the sense that gcd(Tm, Tn) = Tgcd(m,n) if and only if v5(m) =
v5(n). The precise statement is as follows.

Theorem 4.3. Let m and n be positive integers. Then

gcd(Tm, Tn) =

{

Tgcd(m,n), if v5(m) = v5(n),

1, otherwise.

Proof. Let m and n be positive integers. We consider two cases.
Case 1. v5(m) = v5(n).
By Lemma 4.2, it suffices to show that Tgcd(m,n) | gcd(Tm, Tn). We write m = 5km1, n = 5kn1,

and d = gcd(m,n) = 5kd1, where gcd(m1, 5) = gcd(n1, 5) = gcd(d1, 5) = 1. Consequently,
d1 | m1 and d1 | n1. By Lemma 4.1, we have Td | Tm and Td | Tn, i.e., Tgcd(m,n) | gcd(Tm, Tn),
as required.
Case 2. v5(m) 6= v5(n).
Assume to the contrary that there is a prime p such that p | Tm and p | Tn. We write
m = 5km1 and n = 5ℓn1, where gcd(m1, 5) = gcd(n1, 5) = 1. By Theorem 3.2, there exists
a positive integer i such that 5i ‖ Z(p). Since p | Tm and p | Tn, by Theorem 3.3, we have
i = k + 1 and i = ℓ + 1. Consequently, k = ℓ, contradicting the fact that v5(m) 6= v5(n).
Hence, gcd(Tm, Tn) = 1. �

5. Dynamical Properties of (Tn)

In this section, we discuss some dynamical properties of (Tn) that are analogous to the
work of Panraksa, Tangboonduangjit, and Wiboonton [6] of the Fibonacci numbers. For this
purpose we define similar subsequences (Hk(n)) of the sequence (Tn) as follows: for each
positive integer n, we let

H1(n) = Tn and Hk(n) = TnHk−1(n) for k ≥ 2.

The first few terms of such sequence, therefore, are

T (n), T (nT (n)), T (nT (nT (n))), T (nT (nT (nT (n)))).

We will show that each term of this sequence is exactly divisible by some power of Tn. We first
prove some lemmas about the greatest common divisor of the Fibonacci numbers and some
quotients of them.

Lemma 5.1. Let n be a positive integer and p prime. Then

gcd

(

Fn,
Fpn

Fn

)

=

{

p, if p | Fn;

1, otherwise.

Proof. By the expansion formula of Fibonacci into the sum involving binomial coefficients and
lower terms of Fibonacci numbers (see [3], for example), we obtain

Fpn ≡

(

p

1

)

FnF
p−1
n−1 ≡ pFnF

p−1
n−1 (mod F 2

n).

Thus,
Fpn

Fn

≡ pF p−1
n−1 (mod Fn) and the result follows. �
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Lemma 5.2. Let k and n be positive integers such that k | Fn. Then

gcd

(

Fn,
Fkn

kFn

)

= 1.

Proof. Assume that k | Fn. Applying the same expansion formula of Fibonacci numbers as in
the proof of Lemma 5.1, we have

Fkn ≡

(

k

1

)

FnF
k−1
n−1 +

(

k

2

)

F 2
nF

k−2
n−1 ≡ kFnF

k−1
n−1 +

k(k − 1)

2
F 2
nF

k−2
n−1 (mod F 3

n).

Thus,

Fkn

kFn

≡ F k−1
n−1 +

(k − 1)

2
FnF

k−2
n−1 (mod

Fn

k
Fn), so that

Fkn

kFn

≡ F k−1
n−1 (mod Fn).

We therefore have gcd

(

Fkn

kFn

, Fn

)

= gcd(F k−1
n−1 , Fn) = 1, where we have used a well-known

fact which states that gcd(Fn−1, Fn) = 1 for all n.
�

Lemma 5.3. Let k and n be positive integers. Then

gcd
(

FnHk(n), Tn

)

= 1.

Proof. Let k and n be positive integers. Then, since (Fn) is a strong divisibility sequence, we
have

gcd
(

FnHk(n), F5n

)

= Fgcd(nHk(n),5n) = Fn gcd(Hk(n),5) = Fn, (5.1)

where the last equality follows from the fact that 5 ∤ Hk(n). Let

d = gcd
(

FnHk(n), Tn

)

= gcd

(

FnHk(n),
F5n

5Fn

)

.

Then, by (5.1), we have d | Fn. Therefore, d is a common divisor of Fn and Tn. However, since
gcd(Fn, Tn) = 1 (by Theorem 3.1), it follows that d = 1. Hence, the proof is complete. �

The following lemma appeared as a step of the proof of a lemma in [6]. We repeat its proof
here for the sake of completeness.

Lemma 5.4. Let m,k, and ℓ be positive integers with ℓ ≥ 3, then

gcd(mk, ℓ) | mℓ−2.

Proof. Let p be a prime divisor of m. Let r = vp(gcd(m
k, ℓ)) and s = vp(m

ℓ−2). It suffices to
prove that r ≤ s. We have

mk = pr+ic1 and ℓ = pr+jc2,

where i, j ≥ 0 and gcd(p, c1) = gcd(p, c2) = 1. We see that

s =
r + i

k
(pr+jc2 − 2).

Now since
r + i

k
≥ 1, it suffices to show that r ≤ pr+jc2− 2. Since ℓ ≥ 3, the statement is true

when r = 1, and so we may assume that r ≥ 2. Then

pr+jc2 − 2 ≥ pr − 2 ≥ 2r − 2 ≥ r.

Hence, r ≤ s, as desired. �
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In the proof of the next two results, we identify the usual subscript notation of a term of
sequence with its functional notation for the sake of readability.

Theorem 5.5. Let k and n be positive integers. Then

T k
n | Hk(n).

Proof. Let n be a positive integer. We will prove the statement by induction on k. The
case when k = 1 is clear. For the inductive step, we assume that T k(n) | Hk(n) for some
k ≥ 1. Then, by Lemma 4.1, T (nT k(n)) | Hk+1(n). Therefore, it suffices to prove that
T k+1(n) | T (nT k(n)). The expansion formula of the Fibonacci numbers yields

F (5nT k(n)) =

T k(n)
∑

j=1

(

T k(n)

j

)

F j(5n)F T k(n)−j(5n − 1)F (j)

=

T k(n)
∑

j=1

T k(n)

gcd(T k(n), j)
ajF

j(5n)F T k(n)−j(5n − 1)F (j), aj ∈ N

=

T k(n)
∑

j=1

T k(n)ajF (5n)bj , bj ∈ N

= T k+1(n)d, d ∈ N,

where we have used a result by Hermite [4] in the second equality. The third equality follows
from the definition of T (n) and the fact that gcd(T k(n), j) divides T j−1(n) for all j. Indeed,
the case j = 1 is obvious; for the case j = 2, we have gcd(T k(n), j) = 1, since T (n) is odd;
for the case j ≥ 3 we apply Lemma 5.4. The last equality follows again from the definition of
T (n). Therefore,

T (nT k(n)) =
F (5nT k(n))

5F (nT k(n))
=

T k+1(n)d

5F (nT k(n))
.

Since (F (n)) is a divisibility sequence, we have gcd(F (nT k(n)), F (5n)) = F (gcd(nT k(n), 5n)) =
F (n gcd(T k(n), 5)) = F (n). Thus, (F (nT k(n)), T (n)) = 1, so that d

5F (nT k(n))
is an integer.

This proves that T k+1(n) | T (nT k(n)), as desired. This establishes the inductive step and the
proof by induction is complete. �

Theorem 5.6. Let n ≥ 2 and k be positive integers. Then

T k
n ‖ Hk(n).

Proof. Let n ≥ 2 be a positive integer. We will prove the statement by induction on k. The
case when k = 1 is obvious. For the inductive step, we assume that T k(n) ‖ Hk(n). We want
to show that T k+1(n) ‖ Hk+1(n). We have

Hk+1(n) =
F (5nHk(n))

5F (nHk(n))
.

Let the numerator be denoted by P . By Lemma 5.3, it suffices to show that T k+1(n) ‖ P . The
expansion formula of the Fibonacci numbers, together with Theorem 5.5, yields, after taking
modulo T k+2(n)

P ≡ Hk(n)F (5n)FHk(n)−1(5n − 1) +
Hk(n)(Hk(n)− 1)

2
F 2(5n)FHk(n)−2(5n − 1). (5.2)
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Since Hk(n) is odd, as it is a term of (T (n)), we have 2 | Hk(n)− 1 and therefore,

T k+2(n) | Hk(n)

(

Hk(n)− 1

2

)

F 2(5n).

However, T k+1(n) exactly divides the first summand in (5.2). Therefore, T k+1(n) ‖ P, as
required. Hence, the proof by induction is complete. �

Theorem 5.7. For each nonnegative integer i, let Ni be the set of all positive integers n such

that v5(n) = i and let Ti be the set of all Tn with n ∈ Ni. Then the following statements hold.

(1) The collection {Ti}i≥0 partitions the image set of the sequence (Tn), i.e.,

{Tn : n ∈ N} =
⋃

i≥0

Ti.

(2) For each nonnegative integer i and positive integer k, we have

Hk(Ni) ⊂ Ti,

where Hk(Ni) = {Hk(n) : n ∈ Ni}.

Proof. The first statement follows directly from Theorem 4.3. To prove the second statement,
we let i be a nonnegative integer and let n ∈ Ni. It suffices to prove that Hk(n) ∈ Ti for
each k ∈ N. For k = 1, the result is clear. Assume k ≥ 2. For n = 1, the statement is
obvious. Assume n ≥ 2. Then, Theorem 5.5 implies that gcd(Hk(n), Tn) = Tn > 1. Since
Hk(n) = TnHk−1(n), Theorem 4.3 implies that v5(n) = v5(nHk−1(n)). By the definition, this
yields Hk(n) = TnHk−1(n) ∈ Ti. Hence, the statement follows. �

6. The Infinitude of Certain Primes

Upon considering some arithmetic properties of (Tn), one might be led to ask the question:
Is the set of all prime divisors of the sequence (Tn) infinite? To answer this question, we need
the following theorem by Carmichael [1, 9].

Theorem 6.1. For a positive integer n 6= 1, 2, 6, 12, the Fibonacci number Fn has a prime

divisor which does not divide any earlier Fibonacci number.

The next theorem gives the analogue of this theorem for the sequence (Tn) and therefore
provides the affirmative answer to the underlying question above.

Theorem 6.2. For a positive integer n 6= 1, the term Tn has a prime divisor which does not

divide any earlier term of (Tn).

Proof. Let n 6= 1 be a positive integer. Then 5n 6= 1, 2, 6, 12, so that Theorem 6.1 implies
F5n has a prime divisor which does not divide any Fk for all k < 5n. Since Tn = F5n/5Fn, it
follows that Tn has a prime divisor which does not divide any Tk for all k < 5n. In particular,
since n < 5n, this implies Tn has a prime which does not divide any Tk for all k < n. �

In light of Theorem 3.2 which characterizes the prime divisors of the sequence (Tn), some
interesting corollaries of this result follows.

Corollary 6.3. Let P be the set of all primes p of the form p = 10k + 1 with 5 | Z(p). Then

the set P is infinite.

Proof. By Theorem 3.2, P is exactly the set of all prime divisors of the terms of (Tn). However,
by Theorem 6.2, this set is known to be infinite (as Tn has a new prime divisor for each n > 1).
Hence the conclusion follows. �
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Corollary 6.4. For each nonnegative integer i, let Pi be the set of all primes p such that

p | Tn with v5(n) = i. Then the set Pi is infinite.

Proof. Let i be a nonnegative integer. Let (mj) be a subsequence of the sequence of all
positive integers with the property that gcd(5,mj) = 1 for each j. Then Pi is the set of all
prime divisors of the terms of (Tnj

) with nj = 5imj for each j ∈ N. Consequently, Theorem
6.2 implies that Pi is an infinite set, since, for each j > 1, the term Tnj

has a prime divisor
that has never occurred before in prime factorization of Tnk

with k < j. �

Remark 6.5. We have learned from Theorem 6.2 that the set P of all prime divisors of the

terms of (Tn) is infinite. In fact, by Theorem 4.3, it is not difficult to see that the set P can

be partitioned by the set of Pi’s defined in Corollary 6.4, i.e.,

P =
⋃

i≥0

Pi,

where Pi’s are nonempty and pairwise disjoint.
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