FIBONACCI AND LUCAS NUMBERS WHICH ARE ONE AWAY
FROM THEIR PRODUCTS

PRAPANPONG PONGSRIIAM

ABSTRACT. We explicitly solve the Diophantine equations of the form
A7L1 AngAng s Ank 1= B77l7

where (A) and (Bp,) are the Fibonacci or Lucas sequences.

1. INTRODUCTION

Let (F,,)n>0 be the Fibonacci sequence given by Fy =0, F1 =1, and F,, = F,,_1 + F,,_2 for
n > 2, and let (Ly),>0 be the Lucas sequence given by the same recursive pattern but with
the initial values Ly = 2 and L1 = 1.

Diophantine equations involving Fibonacci and Lucas numbers have been a popular area
of research as collected in Guy’s book [5] and in the historical section of [2] and [3]. See also
[7, 8, 9], and [13] for some recent results on this topic. In this article, we are interested in
solving the following Diophantine equations:

Fpy=Fp FpyFpy -+ Fp, £1, (1.1)
Foy =Ly, LpyLyy -+ Ly, +1, (1.2)
Lin = Fp FpyFpy -+ F,, £1, (1.3)
Ly = Ly, LyyLy -+ Ly, £ 1, (1.4)

where m >0, k> 1, and 0 <ny <ng <--- < ny.

Since Fy =0, F} = F5, = L1 = 1, we avoid some trivial solutions when k > 2 by assuming
that n; > 3 in (1.1) and (1.3), and that n; # 1 for any j € {1,2,...,k} in (1.2) and (1.4).
Notice that (1.1), (1.2), (1.3), and (1.4) are actually equivalent to, respectively,

RO Fi 1= F,
LalLaz"'LgLiilem

n1ng
FOFeS .. F% £1 =L,
LalLaz"'ngiilsz

ni——n2

where m > 0, £ > 1,0 <ny <ng <--- < ny, and aq,as,...,a; > 1. For convenience, we
sometimes go back and forth between the equations given in (1.1) to (1.4) and those which
are equivalent to them such as the above.

Finally, we remark that similar equations are also considered by Pongsriiam [11] and par-
tially by Szalay [13], where F, and L,, in (1.1), (1.2), (1.3), and (1.4) are replaced by F2 and
L2,
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2. PRELIMINARIES AND LEMMAS

Since one of our main tools in solving the above equations is the Primitive Divisor Theorem
of Carmichael [4], we first recall some facts about it. Let o and 8 be algebraic numbers such
that o+ 8 and af3 are nonzero coprime integers and a3~! is not a root of unity. Let (Un)n>0
be the sequence given by

ug =0, uy =1, and u,, = (a0 + B)up—1 — (af)up—o for n > 2.
Then Binet’s formula for w,, is given by
n __ An
w, = =P
a—p

So if a = 1+T\/5 and 8 = 1_2‘/5, then (u,) is the Fibonacci sequence.
A prime p is said to be a primitive divisor of u,, if p | u, but p does not divide ujug - -+ up_1.

Then the primitive divisor theorem of Carmichael can be stated as follows.

for n > 0.

Theorem 2.1. [Primitive Divisor Theorem of Carmichael [4]] If &« and 8 are real numbers and
n # 1,2,6, then u, has a primitive divisor except whenn =12, a + =1 and af = —1. In
particular, F, has a primitive divisor for everyn # 1,2,6,12, and L, has a primitive divisor
for every n # 1,6.

There is a long history about primitive divisors and the most remarkable results in this topic
are given by Bilu, Hanrot, and Voutier [1], by Stewart [12], and by Kunrui [6], but Theorem
2.1 is good enough in our situation.

In solving equation (1.2), it is useful to recall Pongsriiam’s result [10] on the factorization
of Fibonacci numbers as a product of Lucas numbers as follows.

Theorem 2.2. [10, Theorem 2] A Fibonacci number F,, can be written as a product of Lucas
numbers if and only if m = 2¢ or m = 3 - 2% for some £ > 0. Furthermore, for each £ > 2,
there is a unique representation of Fye, and exactly five representations of Fs.9¢ as a nontrivial
unordered product of Lucas numbers:

FQZ = L2£—1L2£—2L2273 e LQ, (21)
F3,22 = L3,2271L3,25—2L3,25—3 e L12A, where (22)
A= Fiy9 = LoloLoLoLoLy = L3LolLoLyLy= LegLoLoLy = LgL3Ly = L3yL3LoLo. (23)

Here nontrivial product means that there is no L1 = 1 as a factor, and unordered product
means that the permutation between the factors is not counted as a distinct representation.

Remark 2.3. If { = 2, then the product Lgge—1Lg90-2L500-3--- L1 appearing in (2.2) is
empty and (2.2) becomes Fig = A, which can be written as a product of Lucas numbers as
given in (2.3).

We also need a factorization of F;,, =1 and L,, = 1. Recall that we can define F,, and L,
for a negative integer n by the formula

F = (—1)"'F, and L_j, = (—1)* Ly, for k > 0.
Then the following holds for all integers m, k.
Fn Ly = Fm—i—k + (_1)ka—k- (2'4)
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The identity (2.4) can be proved using Binet’s formula and straightforward algebraic manip-

ulation as follows.
Fo Ly = <M> (ak +5k>

a—f3
B am-i—k + amﬁk _ Bmak _ 5m+k
= "
am-i—k 5m+k a™ (—é)k — 5m (—é)k
T~ ap a—p

= Foyr + (1) Fp.
We will particularly apply (2.4) in the following form.

Lemma 2.4. For every m > 1, we have

(FrioLm2, ifm=0 (mod 4);
2 2
Fo1iLmir, ifm=1 (mod 4);
(i) B — 1= 2 2 ,
Fo-2Lmiz, ifm=2 (mod 4);
2 2
kaTHLmTfl7 if m =3 (mod 4).
Fun2Lmi2, ifm=0 (mod 4);
2 2
FoiiLm-1, ifm=1 (mod 4);
(i) Fo+1=¢ = "= °
Foi2Lm—2, ifm=2 (mod 4);
2 2
kaT—lL%, if m=3 (mod 4).

Proof. This follows immediately from (2.4). For example, if m is even, replacing m by mT+2
and k by ™52 in (2.4), we obtain
m—2
Funi2Lm—2 = Fy, 4+ (—1) 2 Fy,
2 2
which is equal to F,,, — 1 if m =0 (mod 4) and is equal to F,,, + 1 if m =2 (mod 4). O

Next, we give a factorization of L,, £ 1.

Lemma 2.5. For every m > 1, we have

L%/L%, if m =0 (mod 4);

5Fmi1 Frno1, if m=1 (mod 4);
(i) Ly, — 1= 2 2 .

F%/F%, if m =2 (mod 4);

LmTHLmTﬂ, if m =3 (mod 4).

F%m/F%, if m =0 (mod 4);

Lmy1 Lm— s ifm=1 (mod 4 N
i) L1 = § ot Y (mod 4

Lsn/Lm, if m =2 (mod 4);

2 2
5FmT+1F%, if m =3 (mod 4).

Proof. Similar to (2.4), this can be easily checked using Binet’s formula and algebraic manip-
ulation. 0
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3. MAIN RESULTS

We begin this section by solving (1.2). Then we solve (1.4), (1.3), and (1.1), respectively.
The solutions to each equation are a bit different but many of them can be obtained by a
similar argument. In this case, we give a detailed proof for the first and a short proof for the
others.

Theorem 3.1. The Diophantine equation
Ly LyyLy,--- Ly, +1=F, (3.1)
withm >0, k>1, and 0 < ny < ng <--- < ng has a solution if and only if
m=2"—1,204+1,21423.29-1,3.2941,3-29 42,
for some a > 2. In this case, the nontrivial solutions to (3.1) are given by
(i) L1 +1=F3, L3Ly+ 1 = LoL3 + 1 = F; and for a > 4,
LoLyLg- - Lya-3lga—2Lga—1_1+ 1= Fya_q,
(ii) L+ 1= L3+ 1= F5 and for a > 3,
LoLyLg -+ Lya-3Lga—2Loe-1,1 +1 = Fhayq,
(iii) Lo+ 1=Fy, Ly+1=Fg, LoL3 + 1 = LyLg + 1 = Fyg, and for a > 5,
LoLyLg--- Loa-aLga-3lga-2,9 + 1 = Faa-149,
(iv) L8L5 + 1= LoLsLs + 1= Fy1, and for a > 3,
ALygLay -+ Ly.ga—2L3.00-1_1 + 1= F3.00_1,
(v) L3L7 +1 = LoL3L; + 1 = Fi3, and for a > 3,
AL1oLay -+ Lyga—2L3.9a-1,1 +1 = F3.9041, and
(vi) L3Ls +1 = LoL3Ls + 1 = Fi4, and for a > 3,
AL12Lag -+ Ly.ga-2L3.90a-149 + 1 = F3.9a49,
where A = Fyg = L§L3 = L3L3L3 = L§L¢ = LoL3L¢ = L3L3.
Here nontrivial solutions means either thatk =1 ork > 2 andn; # 1 for any j € {1,2,...,k}.

Remark 3.2. If a = 3, the product LigLoy -+ Lg.ga—2 appearing in (iv) of Theorem 3.1 is
empty. In this case, the equation
AL12L24 M L3,2a72L3_2a—1_1 + 1 — F3_2a_1
becomes
AL+ 1 = Fys.

Similarly, if a = 3, the last equations appearing in (v) and (vi) of Theorem 3.1 become ALq3 =
Fos and AL14 = Fog, respectively.

Proof of Theorem 3.1. Since the result can be easily checked for 1 < m < 14, we assume
throughout that m > 15.
Case 1: m =1 (mod 4). Then by Lemma 2.4(i), we can write (3.1) as

Ly Loy Ling -+ Lny, = Fonct L. (3.2)

32 VOLUME 55, NUMBER 1



FIBONACCI AND LUCAS NOS. WHICH ARE ONE AWAY FROM THEIR PRODUCTS

If ng = 0, then the left-hand side of (3.2) is 2¥ but by Theorem 2.1 the right-hand side of (3.2)
has a prime divisor distinct from 2, a contradiction. So n; > 0. By the well-known identity
F,, = F, L,, we can write (3.2) as

Loy Ly Lng -+ Ly Fong Fous = Pt Frp1 P (3.3)

Nk—1

Suppose for a contradiction that m+1 > 2ny. By Theorem 2.1, there exists a prime p dividing

Fp41 but does not divide Fy for any ¢ < m + 1. Since p | Fy,,+1 and p does not divide Fy,,

and Fm+1, we see that p | Ly, for some i = 1,2,...,k —1. Thenp | L,, = I;f”l | Fa,, and
2 g
2n; < 2np_1 < 2np < m+ 1, which is a contradiction. Similarly, the inequality m + 1 < 2ny

leads to a contradiction. So m + 1 = 2n;, and (3.3) is reduced to

LnyLngLng -+ Iy, = Funr.

Nk—1

We remark that this kind of argument will be used repeatedly throughout this article. Now
we see that F'm—1 is a product of Lucas numbers, so we obtain by Theorem 2.2 that mT_l =2¢
2

or 3-2% for some a > 0. Since m > 16, m:2b+1or3-2c—|—1, where b > 4 and ¢ > 3.
Theorem 2.2 also gives all representations of Fpa, Fz.0a for any a > 2. So for m = 20 + 1, we
obtain

FmTA = Fyp1 = L2b72L2b73 <o LgLo,

which means that k =b—1,n, =2, no =4, n3 =8,...,n,_1 =22, and n, = 2°=1 + 1. For
m=3-2°+1, we have

mel - F3,2c71 == L3_2c—2L3_2c—3 T L12A,

where A = Flg = L3L3 = L3L3L% = L¢L3 = Le¢L3Lo = L3L3. This gives five sets of solutions
corresponding to m = 3 - 2¢ 4 1.
Case 2: m =2 (mod 4). By Lemma 2.4(i), (3.1) can be written as

Ly Loy Ling -+ Lny, = Funz2 Linga. (3.4)

2

Similar to Case 1, we apply the identity F5, = F, L, and Theorem 2.1 to obtain 2n; = m + 2
and (3.4) is reduced to
Ly, Ly,Ly,---L

Similar to Case 1, we apply Theorem 2.2 to obtain
m=2"4+2or 3-2°+2 for some b >4, ¢ > 3,

:Fm72.
2

and all representations of Fim—2 as a product of Lucas numbers.
2
Case 3: m =3 (mod 4). By Lemma 2.4(i), (3.1) can be written as

Similar to Case 1, applying Theorem 2.1 leads to m — 1 = 2ny, and Theorem 2.2 gives
m=2"—1or3-2°—1 for some b >4, ¢ > 3,

and the required representations of Fm1.

2
Case 4: m = 0 (mod 4). Similar to the other cases, we first apply Lemma 2.4(i), then use
Theorems 2.1 and 2.2 to conclude that

2np=m—2,m=2"—2or 3-2°—2 for some b >5, ¢ > 3.

But this implies m = 2 (mod 4) contradicting the assumption m = 0 (mod 4).
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Combining every case and the verification of small values m < 14, we obtain the desired
result.

Theorem 3.3. The Diophantine equation
Ly LyyLy,--- Ly, —1=F, (3.5)
withm >0, k>1, and 0 < n; < ng < --- < ng has a solution if and only if 0 < m < 8§,
m=10, m=2%—2, orm=23-2"1 —2 for some a > 4.
In this case, the nontrivial solutions to (3.5) are given by

Ly-1=F, Lo—1=F, Li—1=1F; Ly—1=F;,

L} —1=L3—-1=Fy, LoLy—1=F5L3-1=F;, LoLy—1=Fy,

LoLs —1=Fg, L3Ly— 1= LoL3Ly—1=Fyg, LoL3Ls—1= LoL4Ls—1= Fy,
and for a > 4

L2L4L8 e L2a73L2a—2L2a—1_2 —1= F2a_2,

AL12L24 s L3,2a—4L3_2a—3L3_2a—2_2 —1= F3_2a—1_2, (36)
where A = LgL% = L%L%Lg = L%Lﬁ = Lol3Lg = L%Lg. Here nontrivial solution means either
that k =1 or k > 2 and nj # 1 for any j € {1,2,...,k}. Also, the product LigLoy -+ L3.9a-3
appearing in (3.6) is empty when a =4 and (3.6) becomes

AL10 — 1= Fy.
Proof. The argument is similar to that in Theorem 3.1, so we only give a short proof. We first
directly check the result for 1 < m < 14. Next we assume throughout that m > 15 and apply
Lemma 2.4(ii) to write (3.5) in the form
LnangLng e Lnk - FaLby

where a,b € {m;—2’ m2_2, mg'l, m2_1 } Then we use the identity Fs, = F}, L, and apply Theorem

2.1 to get np = b and the above equation is reduced to
Ly, LyyLy, -+ Ly, | =Fg. (3.7)

Applying Theorem 2.2 completes the process and we obtain the following.

If m =1 (mod 4), then 2n;, = m — 1, m = 2* — 1,3 -2 — 1 for some a > 4, b > 3, which
implies m = 3 (mod 4), a contradiction. So there is no solution in this case. Similarly, there
is no solution when m = 0,3 (mod 4).

For m = 2 (mod 4), we obtain 2nj, = m —2, m = 2% —2,3-2% — 2 for some a > 5 and b > 3,
which leads to the desired solution. O

Theorem 3.4. The Diophantine equation
Ly, Ly,Ly, -+ Ly, +1= Ly, (3.8)

withm >0, k>1, and 0 < ny < ng < --- < ng has a solution if and only if m = 0,2,4 or
m =3 (mod 4). In this case, the nontrivial solutions to (3.8) are given by

Li+1=Ly, Log+1=1Ly, Lo+1=0Ls, LolLo+1= Ly,
LiLy4+1=1L3Ly+1=1Ly LoL3Ls+1=LsLeg+1= Ly,
and an infinite family of solutions

LMLLH_‘_l:Lm
2 2
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for every m > 15 with m = 3 (mod 4). Here nontrivial solution means either that k = 1 or
k>2andn; #1 for any j € {1,2,...,k}.

Proof. Case 1: m =1 (mod 4). Then by Lemma 2.5(i), we can write (3.8) as
Ly Ly L -+ Ly, = 5Fntr Fuuc

Since 5 does not divide any Lucas number, the above equation is not possible.
Case 2: m =2 (mod 4). Again, we apply Lemma 2.5(i) to write (3.8) as

Ly Ly Ling +++ Ly, Fin. = Fi.

Suppose that m > 10. Similar to the proof of Theorem 3.1, we use the identity Fy,, = L, F;, and
apply Theorem 2.1 to obtain 3Tm = 2ny. This implies that m = 0 (mod 4), which contradicts
the assumption that m = 2 (mod 4). So m < 10 and we only need to check the result for
m = 2,6. We see that Ly + 1 = Ly but m = 6 does not lead to a solution.
Case 3: m =3 (mod 4). By Lemma 2.5(i), (3.8) can be written as

Ly LpyLyy, -+ Ly, = L%LmTq.
We first assume that m > 15. Then by Theorem 2.1, Lmi: and Lm-1 have primitive divisors,

2 2

so we obtain nj = mTH, Ng_1 = mT_l, k = 2. In this case, we obtain an infinite number of
solutions given by

LinsLmss +1= Ly, (3.9)
By Lemma 2.5(i), (3.9) also holds for m < 15. So we only need to check if there are other
solutions to (3.8) when m < 15 and m = 3 (mod 4). We see that Ly +1 = L3, LoLoLs + 1 =
L3Ly+1= L7, LoloLoLs+ 1= LsLg+ 1= L1;.
Case 4: m =0 (mod 4). Suppose that m > 5. Similar to the other cases, we apply Lemma
2.5(i) to write (3.8) as
Ly Ly Ly <+ Ly Ly = L.

Applying Theorem 2.1 gives 3m = 2n;, and the above equation is reduced to
Ly, Lp,Ly,---L L% =1.

But the left-hand side of the above > L% > Lo > 3, a contradiction. So m < 5 and we only
need to check the result for m = 0,4. We see that L1 +1 = Ly and LgLs + 1 = L. This
completes the proof. O

Nk—1

Theorem 3.5. The Diophantine equation
Ly, LpyLyy--- Ly, —1= Ly, (3.10)

withm >0, k>1, and 0 <njy <ng <--- < nyg has a solution if and only if m =0,2,4,8 or
m =1 (mod 4). In this case, the nontrivial solutions to (3.10) are given by

Ly—1=1Ly, Lo—1=1Ly, Li—1=L3—1=1Ly, L3—1=LoLs—1=Ly,
LiLy —1=1ILyL3—1=1Ls, LiLy—1=L:LoLs—1=LyL%—1=Lg,
LyLs —1=1Lg, LoL3L;—1=LgLy—1= L3,
and an infinite family of solutions
LnaLmy —1=1Ly,
2 2
for every m > 17 with m = 1 (mod 4). Here nontrivial solution means either that k = 1 or

k>2andn; #1 for any j € {1,2,...,k}.
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Proof. The proof of this theorem is very similar to that of Theorem 3.4. The only main
difference is that we apply Lemma 2.5(ii) instead of Lemma 2.5(i).

Case 1: m =2 (mod 4). We first apply Lemma 2.5(ii). Then the rest of the argument in this
case is the same as that in Case 4 of Theorem 3.4 and we only need to check the result when
m = 2. This leads to

LOL0—1:L2 andLg—lng.
Case 2: m =3 (mod 4). This is the same as Case 1 of Theorem 3.4 where there is no solution.

Case 3: m =1 (mod 4). The argument from Case 3 of Theorem 3.4 can be used here. This
leads to the solutions given by

mel Lm+1 — 1 = Lm fOI' m 2 17,
2 2
and for m < 17, we have

Lo—1=1Ly, LoLoLy—1=LoLs—1=Ls,
LsLs —1=1Ly, LoLeLoL;—1=LgL;—1= Lys.

Case 4: m =0 (mod 4). We first suppose that m > 26. Similar to the other cases, we apply
Lemma 2.5(ii), the identity F5, = F,L,, and Theorem 2.1 to obtain 377” = 2n; and reduce
(3.10) to

Ln,LpyLy, -+ Ly, [ Fn = F,

Ng—1" 5 k-

Again, by the identity Fy, = F,L,, the above equation is
Ly Lypy Ly -+ Ly, Fony  Frn = F, Fy,

Nk—2 k—1"

Note that n; = 3Tm > & > 13. So by Theorem 2.1, we obtain nj = 2nj_; and the above
equation is reduced to

Ly, LpyLy, - Lnk%F% =F, (3.11)

If % > ng_y, then the left-hand side of (3.11) is larger than the right-hand side, which is

not the case. So % < np_q. But np_; = 4 = 3%” < %, a contradiction. So we only need

to check the result when m < 26. We see that m = 0,4,8 lead to the desired solution and

m = 12,16, 20,24 do not lead to a solution. This completes the proof. O
Theorem 3.6. The Diophantine equation

Fo Fo,Fy - Fy +1= 1Ly, (3.12)

withm >0, k>1, and 0 < ny < ng < --- < ng has a solution if and only if 0 < m < 4 or
m =1 (mod 4). In this case, the nontrivial solutions to (3.12) are given by

FL+1=Ly, Fo+1=Ly, Fo+1=1Ly, F3+1=1Ly, F;+1=1Lg,
F3Fy+1=1L;, FF5+1=1Ls, FiF?+1= Ly,
FsFsFy + 1 = F§F5Fr + 1 = Lys,

and an infinite family of solutions

F5FMFM +1=1L,
2 2

for every m > 17 with m = 1 (mod 4). Here nontrivial solution means either that k = 1 or
k> 2 and ny > 3.

36 VOLUME 55, NUMBER 1



FIBONACCI AND LUCAS NOS. WHICH ARE ONE AWAY FROM THEIR PRODUCTS

Proof. The proof of this result is similar to that of the other theorems. By applying Lemma
2.5(i), the identity Fy, = F, L,, and Theorem 2.1, we can obtain ny in term of m and reduce
(3.12) as follows.
Case 1: m =0 (mod 4). If m > 5, then we obtain 3m = nj, and (3.12) is reduced to

o Fry By -+ By Fam Fryy = Fm.

k—1
2
Then the left-hand side of the above equation is > F sm > F m, a contradiction. So we only

need to consider m = 0, 4.

Case 2: m = 1 (mod 4). Suppose m > 27. Then we obtain n, = 1. Repeating the
argument, we obtain that k = 3, ng = mTH, ng = mT_l, n1 = 5. So we only need to check for

additional solutions when m = 1,5,9,13,17, 21, 25.
Case 3: m =2 (mod 4). If m > 9, then we obtain 2* = n; and (3.12) is reduced to

Fo FoyFry o Foy  F = 1.

Nk—1

The left-hand side of the above is > F m > 1, a contradiction. So we only need to consider
m = 2,6.
Case 4: m =3 (mod 4). If m > 14, then we obtain m + 1 = ng, m — 1 = ng_1, and (3.12) is
reduced to

Fo, Fo,Fr, - F,

Nk—2

Frmii Frooa =1,
2 2

But the left-hand side of the above equation > Fm+1 > 1, contradiction. So we need to check
2

the result when m = 3,7, 11.
Combining every case, we only need to check the result when 0 < m < 7 or m =
9,11,13,17,21, 25, which can be easily done. So the proof is complete. O

Theorem 3.7. The Diophantine equation
Fo FoyFry - Fy, —1=1Ly, (3.13)

withm >0, k>1, and 0 < n; < ng < --- < ng has a solution if and only if 0 < m < 5,
m =38, orm =3 (mod 4). In this case, the nontrivial solutions to (3.13) are given by

Fy—1=1Ly, F3—1=1L;, F}-1=1Ly, F;5—1=Ls,
Fo—1=F} —1=1Ly, F}Fj—1=0Ls, F3F4F5—1= Ly,
F3FyFs—1=F4F; —1=1Lg, F2Fg—1=F3F?—1=1Ly,
FyFiFsFsFy — 1 = FyFEF5F — 1 = Log,
and an infinite family of solutions given by
FsFun-1Fmi1 —1= Ly,
i

for m > 15 with m = 3 (mod 4). Here nontrivial solution means either that k =1 or k > 2
and nq > 3.

Proof. The proof of this theorem is the same as that of Theorem 3.6. If m is congruent to
2,3,0 or 1 modulo 4, respectively, then we can follow the argument in Case 1, Case 2, Case 3,
or Case 4 of Theorem 3.6. We leave the details to the reader. (]

Theorem 3.8. The Diophantine equation
o FoFr, - Fy, +1=F, (3.14)
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with m > 0, k > 1, and 0 < ny < ng < --- < ng has a solution if and only if m =
1,2,3,4,5,7,8,10. In this case, the nontrivial solutions to (3.14) are given by
h+1=F, kh+1=F, F+1=F, Kh+1=F; F+1=F,
F?+1=F;, Fi{Fy+1=F;, FiFs+1=Fs, and F3F}+1=F.
Here nontrivial solution means either that k =1 or k > 2 and ny > 3.
Proof. Case 1: m =1 (mod 4) and m > 12. By Lemma 2.4(i), (3.14) can be written as
Fo Foybr, - Fy, = FmTflL%
By the well-known identity Fs, = F,, L, the above is
Fo, Fo,Fry - FnkaTH = FmTfl Foaa. (3.15)
Then from (3.15) and Theorem 2.1, we obtain ny = m + 1 and (3.15) is reduced to
F, F,F, - Fnk,lF% = FmTfl (3.16)

The left-hand side of (3.16) is > FmTH > FmTﬂ, so (3.16) is impossible. Thus there is no

solution in this case.
Case 2: m =2 (mod 4) and m > 11. Similar to Case 1, we apply Lemma 2.4(i), the identity
Fy, = F,L,, and Theorem 2.1 to obtain that ny = m + 2 and (3.14) is reduced to

Fannang"'F FMZFM
2 2

Ng—1
Again, the left-hand side of the above is > Fm-2, a contradiction.

2
Case 3: m =3 (mod 4) and m > 14. Similar to Case 1 and Case 2, (3.14) can be reduced to

B Foy By - F

nkilFm;I — Fm;fl .

Since (F@,FM> = F(D mi1) = 1, there exists a prime p such that p | Fm—1 but p{ Fmi1,
2 2 2 7 2 2 2
which is a contradiction.
Case 4: m =0 (mod 4) and m > 15. Similar to Case 3, there is no solution in this case.
From Case 1 to Case 4, we only need to find the solutions to (3.14) in the case m < 12,
which can be easily done. This completes the proof. O

Theorem 3.9. The Diophantine equation
Fo FoFr, - Fy —1=F, (3.17)

withm >0, k>1, and 0 < ny < ng < -+ < ng has a solution if and only if 0 < m < 6, or
m = 11,13,14. In this case, the nontrivial solutions to (3.17) are given by

h—-1=F, kK-1=F, FF3-1=F, F3—-1=F, F;—1=F;3,
F? -1=F, FF-1=F, F}-1=F;, FF;F5s—1=F;,
FF2F, —1=Fi3, FFiFg—1=Fy.

Here nontrivial solution means either that k =1 or k > 2 and ny > 3.

Proof. The proof of this theorem is similar to that of Theorem 3.8. We consider the equation
according to the residue classes of m modulo 4. The only difference is that we apply Lemma
2.4(ii) instead of 2.4(i). Then we see that we only need to find a solution in the range m < 14.
This leads to the desired result. O
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4. SOME CONSEQUENCES

In this section, we give some results which follow immediately from our main theorems. We
will use some of them in our next article.

Corollary 4.1.
(i) The solutions to the Diophantine equation

B FFs - Fo+1=F, (4.1)
with m > 0 and n > 1 are given by
Fi+1=F, FiFh+1=F; and FiF2F3+1=F,.
(ii) The solutions to the Diophantine equation
B FyFs---F,—1=F,
with m > 0 and n > 1 are given by
FL—-1=F, FF,—-1=F, FFF;—-1=F, FFF;—1=F, and
FyFyF3Fy — 1 = Fs.

Proof. Tt is easy to check the result when n < 2. For n > 3, (i) and (ii) are special cases of
Theorem 3.8 and Theorem 3.9, respectively. O

Our results can be interpreted in terms of product sets and sumsets as well. Recall that for
nonempty subsets A, B of R and o € R, define

A+a={a+a|ac A},
A+B={a+blac Abe B}, and
AB ={ab|a€ A be B}.
We also define
A% = AA and A = AF71A for k > 3.
Now let
F={F,|n>0}and L ={L, | n>0}

be the sets of Fibonacci and Lucas numbers, respectively. Then |J32; F* and |J2, L* are the
sets of all finite products of Fibonacci and Lucas numbers, respectively. Then we have the
following result.

Corollary 4.2. The following statements hold.

(i) Fn (G Fk+1> ={1,2,3,5,13,21,55},
(ii)Fﬂ(UFk— >_{01235889233377}
(iii) Lﬂ(ULkJrl)

(iv) Lﬂ(ULk—1>
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2,3, 7} U{Ly, | m=3 (mod 4)},

2,3,7,47} U{Ly, | m=1 (mod 4)}.
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Proof. As mentioned earlier, | Jpo ; F* is the set of all finite products of Fibonacci numbers.
So Upe, F¥ +1 is the set

{Fn, FryFry - Fp+1] E>1and 0<ny <ng <--- <mny}.

So we can obtain (i) from Theorem 3.8. Similarly, the statements (ii), (iii), and (iv) follow
immediately from Theorem 3.9, Theorem 3.4, and Theorem 3.5, respectively. O

Statements similar to Corollary 4.2 can be given for F'N (Uzozl LF+ 1) and LN (Uzozl Fk 4+ 1)
as well. We leave the details to the reader.
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