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Abstract. We explicitly solve the Diophantine equations of the form

An1
An2

An3
· · ·Ank

± 1 = Bm,

where (An) and (Bm) are the Fibonacci or Lucas sequences.

1. Introduction

Let (Fn)n≥0 be the Fibonacci sequence given by F0 = 0, F1 = 1, and Fn = Fn−1 +Fn−2 for
n ≥ 2, and let (Ln)n≥0 be the Lucas sequence given by the same recursive pattern but with
the initial values L0 = 2 and L1 = 1.

Diophantine equations involving Fibonacci and Lucas numbers have been a popular area
of research as collected in Guy’s book [5] and in the historical section of [2] and [3]. See also
[7, 8, 9], and [13] for some recent results on this topic. In this article, we are interested in
solving the following Diophantine equations:

Fm = Fn1
Fn2

Fn3
· · ·Fnk

± 1, (1.1)

Fm = Ln1
Ln2

Ln3
· · ·Lnk

± 1, (1.2)

Lm = Fn1
Fn2

Fn3
· · ·Fnk

± 1, (1.3)

Lm = Ln1
Ln2

Ln3
· · ·Lnk

± 1, (1.4)

where m ≥ 0, k ≥ 1, and 0 ≤ n1 ≤ n2 ≤ · · · ≤ nk.
Since F0 = 0, F1 = F2 = L1 = 1, we avoid some trivial solutions when k ≥ 2 by assuming

that n1 ≥ 3 in (1.1) and (1.3), and that nj 6= 1 for any j ∈ {1, 2, . . . , k} in (1.2) and (1.4).
Notice that (1.1), (1.2), (1.3), and (1.4) are actually equivalent to, respectively,

F a1
n1
F a2
n2

· · ·F aℓ
nℓ

± 1 = Fm

La1
n1
La2
n2

· · ·Laℓ
nℓ

± 1 = Fm

F a1
n1
F a2
n2

· · ·F aℓ
nℓ

± 1 = Lm

La1
n1
La2
n2

· · ·Laℓ
nℓ

± 1 = Lm

where m ≥ 0, ℓ ≥ 1, 0 ≤ n1 < n2 < · · · < nℓ, and a1, a2, . . . , aℓ ≥ 1. For convenience, we
sometimes go back and forth between the equations given in (1.1) to (1.4) and those which
are equivalent to them such as the above.

Finally, we remark that similar equations are also considered by Pongsriiam [11] and par-
tially by Szalay [13], where Fm and Lm in (1.1), (1.2), (1.3), and (1.4) are replaced by F 2

m and
L2
m.
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2. Preliminaries and Lemmas

Since one of our main tools in solving the above equations is the Primitive Divisor Theorem
of Carmichael [4], we first recall some facts about it. Let α and β be algebraic numbers such
that α+ β and αβ are nonzero coprime integers and αβ−1 is not a root of unity. Let (un)n≥0

be the sequence given by

u0 = 0, u1 = 1, and un = (α+ β)un−1 − (αβ)un−2 for n ≥ 2.

Then Binet’s formula for un is given by

un =
αn − βn

α− β
for n ≥ 0.

So if α = 1+
√
5

2
and β = 1−

√
5

2
, then (un) is the Fibonacci sequence.

A prime p is said to be a primitive divisor of un if p | un but p does not divide u1u2 · · · un−1.
Then the primitive divisor theorem of Carmichael can be stated as follows.

Theorem 2.1. [Primitive Divisor Theorem of Carmichael [4]] If α and β are real numbers and
n 6= 1, 2, 6, then un has a primitive divisor except when n = 12, α + β = 1 and αβ = −1. In
particular, Fn has a primitive divisor for every n 6= 1, 2, 6, 12, and Ln has a primitive divisor
for every n 6= 1, 6.

There is a long history about primitive divisors and the most remarkable results in this topic
are given by Bilu, Hanrot, and Voutier [1], by Stewart [12], and by Kunrui [6], but Theorem
2.1 is good enough in our situation.

In solving equation (1.2), it is useful to recall Pongsriiam’s result [10] on the factorization
of Fibonacci numbers as a product of Lucas numbers as follows.

Theorem 2.2. [10, Theorem 2] A Fibonacci number Fm can be written as a product of Lucas
numbers if and only if m = 2ℓ or m = 3 · 2ℓ for some ℓ ≥ 0. Furthermore, for each ℓ ≥ 2,
there is a unique representation of F2ℓ , and exactly five representations of F3·2ℓ as a nontrivial
unordered product of Lucas numbers:

F2ℓ = L2ℓ−1L2ℓ−2L2ℓ−3 · · ·L2, (2.1)

F3·2ℓ = L3·2ℓ−1L3·2ℓ−2L3·2ℓ−3 · · ·L12A, where (2.2)

A = F12 = L2L2L0L0L0L0 = L3L2L2L0L0 = L6L0L0L0 = L6L3L0 = L3L3L2L2. (2.3)

Here nontrivial product means that there is no L1 = 1 as a factor, and unordered product
means that the permutation between the factors is not counted as a distinct representation.

Remark 2.3. If ℓ = 2, then the product L3·2ℓ−1L3·2ℓ−2L3·2ℓ−3 · · ·L12 appearing in (2.2) is
empty and (2.2) becomes F12 = A, which can be written as a product of Lucas numbers as
given in (2.3).

We also need a factorization of Fm ± 1 and Lm ± 1. Recall that we can define Fn and Ln

for a negative integer n by the formula

F−k = (−1)k+1Fk and L−k = (−1)kLk for k ≥ 0.

Then the following holds for all integers m, k.

FmLk = Fm+k + (−1)kFm−k. (2.4)
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The identity (2.4) can be proved using Binet’s formula and straightforward algebraic manip-
ulation as follows.

FmLk =

(

αm − βm

α− β

)

(

αk + βk
)

=
αm+k + αmβk − βmαk − βm+k

α− β

=
αm+k − βm+k

α− β
+

αm
(

− 1

α

)k
− βm

(

− 1

β

)k

α− β

= Fm+k + (−1)kFm−k.

We will particularly apply (2.4) in the following form.

Lemma 2.4. For every m ≥ 1, we have

(i) Fm − 1 =























Fm+2

2

Lm−2

2

, if m ≡ 0 (mod 4);

Fm−1

2

Lm+1

2

, if m ≡ 1 (mod 4);

Fm−2

2

Lm+2

2

, if m ≡ 2 (mod 4);

Fm+1

2

Lm−1

2

, if m ≡ 3 (mod 4).

(ii) Fm + 1 =























Fm−2

2

Lm+2

2

, if m ≡ 0 (mod 4);

Fm+1

2

Lm−1

2

, if m ≡ 1 (mod 4);

Fm+2

2

Lm−2

2

, if m ≡ 2 (mod 4);

Fm−1

2

Lm+1

2

, if m ≡ 3 (mod 4).

Proof. This follows immediately from (2.4). For example, if m is even, replacing m by m+2

2

and k by m−2

2
in (2.4), we obtain

Fm+2

2

Lm−2

2

= Fm + (−1)
m−2

2 F2,

which is equal to Fm − 1 if m ≡ 0 (mod 4) and is equal to Fm + 1 if m ≡ 2 (mod 4). �

Next, we give a factorization of Lm ± 1.

Lemma 2.5. For every m ≥ 1, we have

(i) Lm − 1 =























L 3m

2

/Lm

2
, if m ≡ 0 (mod 4);

5Fm+1

2

Fm−1

2

, if m ≡ 1 (mod 4);

F 3m

2

/Fm

2
, if m ≡ 2 (mod 4);

Lm+1

2

Lm−1

2

, if m ≡ 3 (mod 4).

(ii) Lm + 1 =























F 3m

2

/Fm

2
, if m ≡ 0 (mod 4);

Lm+1

2

Lm−1

2

, if m ≡ 1 (mod 4);

L 3m

2

/Lm

2
, if m ≡ 2 (mod 4);

5Fm+1

2

Fm−1

2

, if m ≡ 3 (mod 4).

Proof. Similar to (2.4), this can be easily checked using Binet’s formula and algebraic manip-
ulation. �
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3. Main Results

We begin this section by solving (1.2). Then we solve (1.4), (1.3), and (1.1), respectively.
The solutions to each equation are a bit different but many of them can be obtained by a
similar argument. In this case, we give a detailed proof for the first and a short proof for the
others.

Theorem 3.1. The Diophantine equation

Ln1
Ln2

Ln3
· · ·Lnk

+ 1 = Fm (3.1)

with m ≥ 0, k ≥ 1, and 0 ≤ n1 ≤ n2 ≤ · · · ≤ nk has a solution if and only if

m = 2a − 1, 2a + 1, 2a−1 + 2, 3 · 2a − 1, 3 · 2a + 1, 3 · 2a + 2,

for some a ≥ 2. In this case, the nontrivial solutions to (3.1) are given by

(i) L1 + 1 = F3, L
2
0L2 + 1 = L2L3 + 1 = F7 and for a ≥ 4,

L2L4L8 · · ·L2a−3L2a−2L2a−1−1 + 1 = F2a−1,

(ii) L2
0 + 1 = L3 + 1 = F5 and for a ≥ 3,

L2L4L8 · · ·L2a−3L2a−2L2a−1+1 + 1 = F2a+1,

(iii) L0 + 1 = F4, L4 + 1 = F6, L0L
3
2 + 1 = L2L6 + 1 = F10, and for a ≥ 5,

L2L4L8 · · ·L2a−4L2a−3L2a−2+2 + 1 = F2a−1+2,

(iv) L3
0L5 + 1 = L0L3L5 + 1 = F11, and for a ≥ 3,

AL12L24 · · ·L3·2a−2L3·2a−1−1 + 1 = F3·2a−1,

(v) L3
0L7 + 1 = L0L3L7 + 1 = F13, and for a ≥ 3,

AL12L24 · · ·L3·2a−2L3·2a−1+1 + 1 = F3·2a+1, and

(vi) L3
0L8 + 1 = L0L3L8 + 1 = F14, and for a ≥ 3,

AL12L24 · · ·L3·2a−2L3·2a−1+2 + 1 = F3·2a+2,

where A = F12 = L4
0L

2
2 = L2

0L
2
2L3 = L3

0L6 = L0L3L6 = L2
2L

2
3.

Here nontrivial solutions means either that k = 1 or k ≥ 2 and nj 6= 1 for any j ∈ {1, 2, . . . , k}.

Remark 3.2. If a = 3, the product L12L24 · · ·L3·2a−2 appearing in (iv) of Theorem 3.1 is
empty. In this case, the equation

AL12L24 · · ·L3·2a−2L3·2a−1−1 + 1 = F3·2a−1

becomes

AL11 + 1 = F23.

Similarly, if a = 3, the last equations appearing in (v) and (vi) of Theorem 3.1 become AL13 =
F25 and AL14 = F26, respectively.

Proof of Theorem 3.1. Since the result can be easily checked for 1 ≤ m ≤ 14, we assume
throughout that m ≥ 15.
Case 1: m ≡ 1 (mod 4). Then by Lemma 2.4(i), we can write (3.1) as

Ln1
Ln2

Ln3
· · ·Lnk

= Fm−1

2

Lm+1

2

. (3.2)

32 VOLUME 55, NUMBER 1



FIBONACCI AND LUCAS NOS. WHICH ARE ONE AWAY FROM THEIR PRODUCTS

If nk = 0, then the left-hand side of (3.2) is 2k but by Theorem 2.1 the right-hand side of (3.2)
has a prime divisor distinct from 2, a contradiction. So nk > 0. By the well-known identity
F2n = FnLn, we can write (3.2) as

Ln1
Ln2

Ln3
· · ·Lnk−1

F2nk
Fm+1

2

= Fm−1

2

Fm+1Fnk
. (3.3)

Suppose for a contradiction that m+1 > 2nk. By Theorem 2.1, there exists a prime p dividing
Fm+1 but does not divide Fℓ for any ℓ < m + 1. Since p | Fm+1 and p does not divide F2nk

and Fm+1

2

, we see that p | Lni
for some i = 1, 2, . . . , k − 1. Then p | Lni

=
F2ni

Fni

| F2ni
and

2ni ≤ 2nk−1 ≤ 2nk < m+ 1, which is a contradiction. Similarly, the inequality m+ 1 < 2nk

leads to a contradiction. So m+ 1 = 2nk and (3.3) is reduced to

Ln1
Ln2

Ln3
· · ·Lnk−1

= Fm−1

2

.

We remark that this kind of argument will be used repeatedly throughout this article. Now
we see that Fm−1

2

is a product of Lucas numbers, so we obtain by Theorem 2.2 that m−1

2
= 2a

or 3 · 2a for some a ≥ 0. Since m ≥ 16, m = 2b + 1 or 3 · 2c + 1, where b ≥ 4 and c ≥ 3.
Theorem 2.2 also gives all representations of F2a , F3·2a for any a ≥ 2. So for m = 2b + 1, we
obtain

Fm−1

2

= F2b−1 = L2b−2L2b−3 · · ·L4L2,

which means that k = b− 1, n1 = 2, n2 = 4, n3 = 8, . . . , nk−1 = 2b−2, and nk = 2b−1 + 1. For
m = 3 · 2c + 1, we have

Fm−1

2

= F3·2c−1 = L3·2c−2L3·2c−3 · · ·L12A,

where A = F12 = L2
2L

4
0 = L3L

2
2L

2
0 = L6L

3
0 = L6L3L0 = L2

3L
2
2. This gives five sets of solutions

corresponding to m = 3 · 2c + 1.
Case 2: m ≡ 2 (mod 4). By Lemma 2.4(i), (3.1) can be written as

Ln1
Ln2

Ln3
· · ·Lnk

= Fm−2

2

Lm+2

2

. (3.4)

Similar to Case 1, we apply the identity F2n = FnLn and Theorem 2.1 to obtain 2nk = m+2
and (3.4) is reduced to

Ln1
Ln2

Ln3
· · ·Lnk−1

= Fm−2

2

.

Similar to Case 1, we apply Theorem 2.2 to obtain

m = 2b + 2 or 3 · 2c + 2 for some b ≥ 4, c ≥ 3,

and all representations of Fm−2

2

as a product of Lucas numbers.

Case 3: m ≡ 3 (mod 4). By Lemma 2.4(i), (3.1) can be written as

Ln1
Ln2

Ln3
· · ·Lnk

= Fm+1

2

Lm−1

2

.

Similar to Case 1, applying Theorem 2.1 leads to m− 1 = 2nk, and Theorem 2.2 gives

m = 2b − 1 or 3 · 2c − 1 for some b ≥ 4, c ≥ 3,

and the required representations of Fm+1

2

.

Case 4: m ≡ 0 (mod 4). Similar to the other cases, we first apply Lemma 2.4(i), then use
Theorems 2.1 and 2.2 to conclude that

2nk = m− 2, m = 2b − 2 or 3 · 2c − 2 for some b ≥ 5, c ≥ 3.

But this implies m ≡ 2 (mod 4) contradicting the assumption m ≡ 0 (mod 4).

FEBRUARY 2017 33



THE FIBONACCI QUARTERLY

Combining every case and the verification of small values m ≤ 14, we obtain the desired
result.

Theorem 3.3. The Diophantine equation

Ln1
Ln2

Ln3
· · ·Lnk

− 1 = Fm (3.5)

with m ≥ 0, k ≥ 1, and 0 ≤ n1 ≤ n2 ≤ · · · ≤ nk has a solution if and only if 0 ≤ m ≤ 8,
m = 10, m = 2a − 2, or m = 3 · 2a−1 − 2 for some a ≥ 4.

In this case, the nontrivial solutions to (3.5) are given by

L1 − 1 = F0, L0 − 1 = F1, L0 − 1 = F2, L2 − 1 = F3,

L2
0 − 1 = L3 − 1 = F4, L0L2 − 1 = F5, L

2
2 − 1 = F6, L0L4 − 1 = F7,

L0L5 − 1 = F8, L3
0L4 − 1 = L0L3L4 − 1 = F10, L0L

3
2L4 − 1 = L2L4L6 − 1 = F14,

and for a ≥ 4

L2L4L8 · · ·L2a−3L2a−2L2a−1−2 − 1 = F2a−2,

AL12L24 · · ·L3·2a−4L3·2a−3L3·2a−2−2 − 1 = F3·2a−1−2, (3.6)

where A = L4
0L

2
2 = L2

0L
2
2L3 = L3

0L6 = L0L3L6 = L2
2L

2
3. Here nontrivial solution means either

that k = 1 or k ≥ 2 and nj 6= 1 for any j ∈ {1, 2, . . . , k}. Also, the product L12L24 · · ·L3·2a−3

appearing in (3.6) is empty when a = 4 and (3.6) becomes

AL10 − 1 = F22.

Proof. The argument is similar to that in Theorem 3.1, so we only give a short proof. We first
directly check the result for 1 ≤ m ≤ 14. Next we assume throughout that m ≥ 15 and apply
Lemma 2.4(ii) to write (3.5) in the form

Ln1
Ln2

Ln3
· · ·Lnk

= FaLb,

where a, b ∈
{

m+2

2
, m−2

2
, m+1

2
, m−1

2

}

. Then we use the identity F2n = FnLn and apply Theorem
2.1 to get nk = b and the above equation is reduced to

Ln1
Ln2

Ln3
· · ·Lnk−1

= Fa. (3.7)

Applying Theorem 2.2 completes the process and we obtain the following.
If m ≡ 1 (mod 4), then 2nk = m − 1, m = 2a − 1, 3 · 2b − 1 for some a ≥ 4, b ≥ 3, which

implies m ≡ 3 (mod 4), a contradiction. So there is no solution in this case. Similarly, there
is no solution when m ≡ 0, 3 (mod 4).

For m ≡ 2 (mod 4), we obtain 2nk = m− 2, m = 2a− 2, 3 · 2b − 2 for some a ≥ 5 and b ≥ 3,
which leads to the desired solution. �

Theorem 3.4. The Diophantine equation

Ln1
Ln2

Ln3
· · ·Lnk

+ 1 = Lm (3.8)

with m ≥ 0, k ≥ 1, and 0 ≤ n1 ≤ n2 ≤ · · · ≤ nk has a solution if and only if m = 0, 2, 4 or
m ≡ 3 (mod 4). In this case, the nontrivial solutions to (3.8) are given by

L1 + 1 = L0, L0 + 1 = L2, L2 + 1 = L3, L0L2 + 1 = L4,

L2
0L4 + 1 = L3L4 + 1 = L7, L0L

2
2L5 + 1 = L5L6 + 1 = L11,

and an infinite family of solutions

Lm−1

2

Lm+1

2

+ 1 = Lm
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for every m ≥ 15 with m ≡ 3 (mod 4). Here nontrivial solution means either that k = 1 or
k ≥ 2 and nj 6= 1 for any j ∈ {1, 2, . . . , k}.

Proof. Case 1: m ≡ 1 (mod 4). Then by Lemma 2.5(i), we can write (3.8) as

Ln1
Ln2

Ln3
· · ·Lnk

= 5Fm+1

2

Fm−1

2

.

Since 5 does not divide any Lucas number, the above equation is not possible.
Case 2: m ≡ 2 (mod 4). Again, we apply Lemma 2.5(i) to write (3.8) as

Ln1
Ln2

Ln3
· · ·Lnk

Fm

2
= F 3m

2

.

Suppose thatm ≥ 10. Similar to the proof of Theorem 3.1, we use the identity F2n = LnFn and
apply Theorem 2.1 to obtain 3m

2
= 2nk. This implies that m ≡ 0 (mod 4), which contradicts

the assumption that m ≡ 2 (mod 4). So m < 10 and we only need to check the result for
m = 2, 6. We see that L0 + 1 = L2 but m = 6 does not lead to a solution.
Case 3: m ≡ 3 (mod 4). By Lemma 2.5(i), (3.8) can be written as

Ln1
Ln2

Ln3
· · ·Lnk

= Lm+1

2

Lm−1

2

.

We first assume that m ≥ 15. Then by Theorem 2.1, Lm+1

2

and Lm−1

2

have primitive divisors,

so we obtain nk = m+1

2
, nk−1 = m−1

2
, k = 2. In this case, we obtain an infinite number of

solutions given by
Lm−1

2

Lm+1

2

+ 1 = Lm. (3.9)

By Lemma 2.5(i), (3.9) also holds for m < 15. So we only need to check if there are other
solutions to (3.8) when m < 15 and m ≡ 3 (mod 4). We see that L2 + 1 = L3, L0L0L4 + 1 =
L3L4 + 1 = L7, L0L2L2L5 + 1 = L5L6 + 1 = L11.
Case 4: m ≡ 0 (mod 4). Suppose that m ≥ 5. Similar to the other cases, we apply Lemma
2.5(i) to write (3.8) as

Ln1
Ln2

Ln3
· · ·Lnk

Lm

2
= L 3m

2

.

Applying Theorem 2.1 gives 3m = 2nk, and the above equation is reduced to

Ln1
Ln2

Ln3
· · ·Lnk−1

Lm

2
= 1.

But the left-hand side of the above ≥ Lm

2
≥ L2 > 3, a contradiction. So m < 5 and we only

need to check the result for m = 0, 4. We see that L1 + 1 = L0 and L0L2 + 1 = L4. This
completes the proof. �

Theorem 3.5. The Diophantine equation

Ln1
Ln2

Ln3
· · ·Lnk

− 1 = Lm (3.10)

with m ≥ 0, k ≥ 1, and 0 ≤ n1 ≤ n2 ≤ · · · ≤ nk has a solution if and only if m = 0, 2, 4, 8 or
m ≡ 1 (mod 4). In this case, the nontrivial solutions to (3.10) are given by

L2 − 1 = L0, L0 − 1 = L1, L2
0 − 1 = L3 − 1 = L2, L3

0 − 1 = L0L3 − 1 = L4,

L2
0L2 − 1 = L2L3 − 1 = L5, L4

0L2 − 1 = L2
0L2L3 − 1 = L2L

2
3 − 1 = L8,

L4L5 − 1 = L9, L0L
2
2L7 − 1 = L6L7 − 1 = L13,

and an infinite family of solutions

Lm−1

2

Lm+1

2

− 1 = Lm

for every m ≥ 17 with m ≡ 1 (mod 4). Here nontrivial solution means either that k = 1 or
k ≥ 2 and nj 6= 1 for any j ∈ {1, 2, . . . , k}.
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Proof. The proof of this theorem is very similar to that of Theorem 3.4. The only main
difference is that we apply Lemma 2.5(ii) instead of Lemma 2.5(i).
Case 1: m ≡ 2 (mod 4). We first apply Lemma 2.5(ii). Then the rest of the argument in this
case is the same as that in Case 4 of Theorem 3.4 and we only need to check the result when
m = 2. This leads to

L0L0 − 1 = L2 and L3 − 1 = L2.

Case 2: m ≡ 3 (mod 4). This is the same as Case 1 of Theorem 3.4 where there is no solution.
Case 3: m ≡ 1 (mod 4). The argument from Case 3 of Theorem 3.4 can be used here. This
leads to the solutions given by

Lm−1

2

Lm+1

2

− 1 = Lm for m ≥ 17,

and for m < 17, we have

L0 − 1 = L1, L0L0L2 − 1 = L2L3 − 1 = L5,

L4L5 − 1 = L9, L0L2L2L7 − 1 = L6L7 − 1 = L13.

Case 4: m ≡ 0 (mod 4). We first suppose that m ≥ 26. Similar to the other cases, we apply
Lemma 2.5(ii), the identity F2n = FnLn, and Theorem 2.1 to obtain 3m

2
= 2nk and reduce

(3.10) to

Ln1
Ln2

Ln3
· · ·Lnk−1

Fm

2
= Fnk

.

Again, by the identity F2n = FnLn, the above equation is

Ln1
Ln2

Ln3
· · ·Lnk−2

F2nk−1
Fm

2
= Fnk

Fnk−1
.

Note that nk = 3m
4

> m
2

≥ 13. So by Theorem 2.1, we obtain nk = 2nk−1 and the above
equation is reduced to

Ln1
Ln2

Ln3
· · ·Lnk−2

Fm

2
= Fnk−1

. (3.11)

If m
2

> nk−1, then the left-hand side of (3.11) is larger than the right-hand side, which is

not the case. So m
2

≤ nk−1. But nk−1 = nk

2
= 3m

8
< m

2
, a contradiction. So we only need

to check the result when m < 26. We see that m = 0, 4, 8 lead to the desired solution and
m = 12, 16, 20, 24 do not lead to a solution. This completes the proof. �

Theorem 3.6. The Diophantine equation

Fn1
Fn2

Fn3
· · ·Fnk

+ 1 = Lm (3.12)

with m ≥ 0, k ≥ 1, and 0 ≤ n1 ≤ n2 ≤ · · · ≤ nk has a solution if and only if 0 ≤ m ≤ 4 or
m ≡ 1 (mod 4). In this case, the nontrivial solutions to (3.12) are given by

F1 + 1 = L0, F2 + 1 = L0, F0 + 1 = L1, F3 + 1 = L2, F4 + 1 = L3,

F3F4 + 1 = L4, F3F5 + 1 = L5, F4F
2
5 + 1 = L9,

F5F6F7 + 1 = F 3
3F5F7 + 1 = L13,

and an infinite family of solutions

F5Fm−1

2

Fm+1

2

+ 1 = Lm

for every m ≥ 17 with m ≡ 1 (mod 4). Here nontrivial solution means either that k = 1 or
k ≥ 2 and n1 ≥ 3.
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Proof. The proof of this result is similar to that of the other theorems. By applying Lemma
2.5(i), the identity F2n = FnLn, and Theorem 2.1, we can obtain nk in term of m and reduce
(3.12) as follows.
Case 1: m ≡ 0 (mod 4). If m ≥ 5, then we obtain 3m = nk and (3.12) is reduced to

Fn1
Fn2

Fn3
· · ·Fnk−1

F 3m

2

Fm = Fm

2
.

Then the left-hand side of the above equation is ≥ F 3m

2

> Fm

2
, a contradiction. So we only

need to consider m = 0, 4.
Case 2: m ≡ 1 (mod 4). Suppose m ≥ 27. Then we obtain nk = m+1

2
. Repeating the

argument, we obtain that k = 3, n3 = m+1

2
, n2 = m−1

2
, n1 = 5. So we only need to check for

additional solutions when m = 1, 5, 9, 13, 17, 21, 25.
Case 3: m ≡ 2 (mod 4). If m ≥ 9, then we obtain 3m

2
= nk and (3.12) is reduced to

Fn1
Fn2

Fn3
· · ·Fnk−1

Fm

2
= 1.

The left-hand side of the above is ≥ Fm

2
> 1, a contradiction. So we only need to consider

m = 2, 6.
Case 4: m ≡ 3 (mod 4). If m ≥ 14, then we obtain m+ 1 = nk, m− 1 = nk−1, and (3.12) is
reduced to

Fn1
Fn2

Fn3
· · ·Fnk−2

Fm+1

2

Fm−1

2

= 1.

But the left-hand side of the above equation > Fm+1

2

> 1, contradiction. So we need to check

the result when m = 3, 7, 11.
Combining every case, we only need to check the result when 0 ≤ m ≤ 7 or m =

9, 11, 13, 17, 21, 25, which can be easily done. So the proof is complete. �

Theorem 3.7. The Diophantine equation

Fn1
Fn2

Fn3
· · ·Fnk

− 1 = Lm (3.13)

with m ≥ 0, k ≥ 1, and 0 ≤ n1 ≤ n2 ≤ · · · ≤ nk has a solution if and only if 0 ≤ m ≤ 5,
m = 8, or m ≡ 3 (mod 4). In this case, the nontrivial solutions to (3.13) are given by

F4 − 1 = L0, F3 − 1 = L1, F 2
3 − 1 = L2, F5 − 1 = L3,

F6 − 1 = F 3
3 − 1 = L4, F 2

3 F4 − 1 = L5, F3F4F5 − 1 = L7,

F3F4F6 − 1 = F 4
3F4 − 1 = L8, F 2

5F6 − 1 = F 3
3F

2
5 − 1 = L11,

F3F
2
4 F5F6F11 − 1 = F 4

3F
2
4 F5F11 − 1 = L23,

and an infinite family of solutions given by

F5Fm−1

2

Fm+1

2

− 1 = Lm

for m ≥ 15 with m ≡ 3 (mod 4). Here nontrivial solution means either that k = 1 or k ≥ 2
and n1 ≥ 3.

Proof. The proof of this theorem is the same as that of Theorem 3.6. If m is congruent to
2, 3, 0 or 1 modulo 4, respectively, then we can follow the argument in Case 1, Case 2, Case 3,
or Case 4 of Theorem 3.6. We leave the details to the reader. �

Theorem 3.8. The Diophantine equation

Fn1
Fn2

Fn3
· · ·Fnk

+ 1 = Fm (3.14)
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with m ≥ 0, k ≥ 1, and 0 ≤ n1 ≤ n2 ≤ · · · ≤ nk has a solution if and only if m =
1, 2, 3, 4, 5, 7, 8, 10. In this case, the nontrivial solutions to (3.14) are given by

F0 + 1 = F1, F0 + 1 = F2, F1 + 1 = F3, F2 + 1 = F3, F3 + 1 = F4,

F 2
3 + 1 = F5, F 2

3 F4 + 1 = F7, F 2
3 F5 + 1 = F8, and F3F

3
4 + 1 = F10.

Here nontrivial solution means either that k = 1 or k ≥ 2 and n1 ≥ 3.

Proof. Case 1: m ≡ 1 (mod 4) and m ≥ 12. By Lemma 2.4(i), (3.14) can be written as

Fn1
Fn2

Fn3
· · ·Fnk

= Fm−1

2

Lm+1

2

.

By the well-known identity F2n = FnLn, the above is

Fn1
Fn2

Fn3
· · ·Fnk

Fm+1

2

= Fm−1

2

Fm+1. (3.15)

Then from (3.15) and Theorem 2.1, we obtain nk = m+ 1 and (3.15) is reduced to

Fn1
Fn2

Fn3
· · ·Fnk−1

Fm+1

2

= Fm−1

2

. (3.16)

The left-hand side of (3.16) is ≥ Fm+1

2

> Fm−1

2

, so (3.16) is impossible. Thus there is no

solution in this case.
Case 2: m ≡ 2 (mod 4) and m ≥ 11. Similar to Case 1, we apply Lemma 2.4(i), the identity
F2n = FnLn, and Theorem 2.1 to obtain that nk = m+ 2 and (3.14) is reduced to

Fn1
Fn2

Fn3
· · ·Fnk−1

Fm+2

2

= Fm−2

2

.

Again, the left-hand side of the above is > Fm−2

2

, a contradiction.

Case 3: m ≡ 3 (mod 4) and m ≥ 14. Similar to Case 1 and Case 2, (3.14) can be reduced to

Fn1
Fn2

Fn3
· · ·Fnk−1

Fm−1

2

= Fm+1

2

.

Since
(

Fm−1

2

, Fm+1

2

)

= F(m−1

2
,m+1

2 ) = 1, there exists a prime p such that p | Fm−1

2

but p ∤ Fm+1

2

,

which is a contradiction.
Case 4: m ≡ 0 (mod 4) and m ≥ 15. Similar to Case 3, there is no solution in this case.

From Case 1 to Case 4, we only need to find the solutions to (3.14) in the case m ≤ 12,
which can be easily done. This completes the proof. �

Theorem 3.9. The Diophantine equation

Fn1
Fn2

Fn3
· · ·Fnk

− 1 = Fm (3.17)

with m ≥ 0, k ≥ 1, and 0 ≤ n1 ≤ n2 ≤ · · · ≤ nk has a solution if and only if 0 ≤ m ≤ 6, or
m = 11, 13, 14. In this case, the nontrivial solutions to (3.17) are given by

F1 − 1 = F0, F2 − 1 = F0, F3 − 1 = F1, F3 − 1 = F2, F4 − 1 = F3,

F 2
3 − 1 = F4, F3F4 − 1 = F5, F 2

4 − 1 = F6, F3F
2
4 F5 − 1 = F11,

F3F
2
4 F7 − 1 = F13, F3F

2
4F8 − 1 = F14.

Here nontrivial solution means either that k = 1 or k ≥ 2 and n1 ≥ 3.

Proof. The proof of this theorem is similar to that of Theorem 3.8. We consider the equation
according to the residue classes of m modulo 4. The only difference is that we apply Lemma
2.4(ii) instead of 2.4(i). Then we see that we only need to find a solution in the range m ≤ 14.
This leads to the desired result. �
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4. Some Consequences

In this section, we give some results which follow immediately from our main theorems. We
will use some of them in our next article.

Corollary 4.1.

(i) The solutions to the Diophantine equation

F1F2F3 · · ·Fn + 1 = Fm (4.1)

with m ≥ 0 and n ≥ 1 are given by

F1 + 1 = F3, F1F2 + 1 = F3, and F1F2F3 + 1 = F4.

(ii) The solutions to the Diophantine equation

F1F2F3 · · ·Fn − 1 = Fm

with m ≥ 0 and n ≥ 1 are given by

F1 − 1 = F0, F1F2 − 1 = F0, F1F2F3 − 1 = F1, F1F2F3 − 1 = F2, and

F1F2F3F4 − 1 = F5.

Proof. It is easy to check the result when n ≤ 2. For n ≥ 3, (i) and (ii) are special cases of
Theorem 3.8 and Theorem 3.9, respectively. �

Our results can be interpreted in terms of product sets and sumsets as well. Recall that for
nonempty subsets A,B of R and α ∈ R, define

A+ α = {a+ α | a ∈ A},

A+B = {a+ b | a ∈ A, b ∈ B}, and

AB = {ab | a ∈ A, b ∈ B}.

We also define

A2 = AA and Ak = Ak−1A for k ≥ 3.

Now let

F = {Fn | n ≥ 0} and L = {Ln | n ≥ 0}

be the sets of Fibonacci and Lucas numbers, respectively. Then
⋃∞

k=1
F k and

⋃∞
k=1

Lk are the
sets of all finite products of Fibonacci and Lucas numbers, respectively. Then we have the
following result.

Corollary 4.2. The following statements hold.

(i) F ∩

( ∞
⋃

k=1

F k + 1

)

= {1, 2, 3, 5, 13, 21, 55},

(ii) F ∩

( ∞
⋃

k=1

F k − 1

)

= {0, 1, 2, 3, 5, 8, 89, 233, 377},

(iii) L ∩

( ∞
⋃

k=1

Lk + 1

)

= {2, 3, 7} ∪ {Lm | m ≡ 3 (mod 4)},

(iv) L ∩

( ∞
⋃

k=1

Lk − 1

)

= {2, 3, 7, 47} ∪ {Lm | m ≡ 1 (mod 4)}.
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Proof. As mentioned earlier,
⋃∞

k=1
F k is the set of all finite products of Fibonacci numbers.

So
⋃∞

k=1
F k + 1 is the set

{Fn1
Fn2

Fn3
· · ·Fnk

+ 1 | k ≥ 1 and 0 ≤ n1 ≤ n2 ≤ · · · ≤ nk} .

So we can obtain (i) from Theorem 3.8. Similarly, the statements (ii), (iii), and (iv) follow
immediately from Theorem 3.9, Theorem 3.4, and Theorem 3.5, respectively. �

Statements similar to Corollary 4.2 can be given for F∩
(
⋃∞

k=1
Lk ± 1

)

and L∩
(
⋃∞

k=1
F k ± 1

)

as well. We leave the details to the reader.
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