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Abstract. This paper further generalizes the Ledin-Shannon-Ollerton result, the recent re-
sult of Shannon and Ollerton who resurrected an old identity due to Ledin, to all metallic
sequences. The results presented in this paper give closed-form formulas for the sum of prod-
ucts of powers of the first n integers with the first n members of the metallic sequence. Three
key innovations of this paper are i) reducing the proof of the generalization to the solution
of a system of 4 simultaneous recursions; ii) use of the shift operation to prove equality of
polynomials; and iii) new OEIS sequences arising from the coefficients of the four polynomial
families satisfying the 4 simultaneous recursions.

1. Introduction

Shannon and Ollerton [1] in a beautiful paper recently resurrected an old result of Ledin
[2]. Here are two identities, the first, (1.1), from the Ledin paper, and the second, (1.2), from
the current paper.

n∑
k=1

k2Fk =

(
n2 − 2n + 5

)
Fn +

(
n2 − 4n + 8

)
Fn+1 − 8, (1.1)

where {Fk}k≥0 are, as usual the Fibonacci numbers, and n is an arbitrary positive integer.

n∑
k=1

k3Pk =
1

2
×
(
n3 + 3n− 3

)
Pn +

1

2
×
(
n3 − 3n2 + 6n− 7

)
Pn+1 +

7

2
, (1.2)

where {Pk}k≥0 are, as usual the Pell numbers, and n is an arbitrary positive integer.
What intrigued Shannon, Ollerton, and Ledin are the polynomial coefficients in the above

equations: n2 − 2n + 5, n2 − 4n + 8, 12(n3 + 3n− 3), and 1
2(n3 − 3n2 + 6n− 7).

These examples naturally motivate generalization. An outline of the rest of this paper is as
follows. Section 2 describes the main result of this paper generalizing all previous results. The
four, integer, triangular arrays used to produce the polynomial coefficients in (1.1)-(1.2) are
presented in Section 3; they naturally correspond to new OEIS sequences. Section 4 discusses
the contributions of this paper to previous results. Sections 5 begins the proof and naturally
motivates defining the shift algebraic operator whose properties are explored in Section 6.
Section 7 completes the proof. Section 8 presents fun facts, patterns, and identities on the
four new OEIS triangular arrays.

2. The Main Result

We first recall the definition of the metallic sequences [3, 4].

Acknowledgement is given to an anonymous referee for a careful reading of the manuscript as well as several
suggestions enhancing clarity.
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Definition 2.1. The metallic sequence of order m ≥ 1, is defined recursively by

G0 = 0, G1 = 1, Gn = mGn−1 + Gn−2, n ≥ 2. (2.1)

For m = 1, 2 the sequences have names, Golden and Silver, corresponding to the Fibonacci
and Pell numbers. Sequences for m ≥ 3, depending on the author, may be called Bronze, or
Copper etc. When emphasis is needed, the symbol G(m) will indicate the metallic sequence
with parameter m (2.1). We will use the term metallicity of the sequence to refer to m.

Convention. Throughout the paper if r(x) is any polynomial of degree deg(r), then the
notation for the coefficients of r(x) are given by

r(x) =

deg(r)∑
i=0

rix
i. (2.2)

Theorem 2.2 (Main Theorem). For m ≥ 1, n ≥ 0, p ≥ 1 there exist two degree-p polynomials
with rational coefficients, F (x), T (x) such that

S(n,m, p) :=

n∑
k=0

kpG
(m)
k = F (n)G(m)

n + T (n)G
(m)
n+1 − T (0). (2.3)

Moreover we can give explicit form to F (n) and T (n). We first define four integer-polynomial
families satisfying the following system of simultaneous recursions.

f (0)(X) = 1;

t(i)(X) =

j=i∑
j=0

(
i

j

)
Xi−jf (j)(X), i ≥ 0;

d(i)(X) = t(i)(X)−Xf (i)(X), i ≥ 0; (2.4)

s(i)(X) = f (i)(X) + d(i)(X), i ≥ 0;

f (i)(X) =

j=i−1∑
j=0

(
i

j

)
Xi−1−js(j)(X), i ≥ 1.

Then the formulas for F (n) and T (n) are

F (n) =

p∑
i=0

f (i)(m)

mi+1
× (−1)i

(
p

i

)
np−i, T (n) =

p∑
i=0

t(i)(m)

mi+1
× (−1)i

(
p

i

)
np−i. (2.5)

For the proof of the Main Theorem we will also need a polynomial D(k), defined by

D(n) = T (n)−mF (n) =

p∑
i=0

d(i)(m)

mi+1
× (−1)i

(
p

i

)
np−i, (2.6)

where the last equality follows from (2.4).

3. Basics about the Main Theorem

Before proceeding, we present in this section, some basics about the Main Theorem.

Comment. There are many symbols in this theorem and throughout the paper. We have
endeavored to make the notation mnemonical to facilitate readability. F and T correspond
to the first and second, (that is the number “t”wo) polynomial in (2.3) when read from left
to right (or corresponding to increasing indices of G). m corresponds to the metallicity of

DECEMBER 2022 173



THE FIBONACCI QUARTERLY

the recursion. p corresponds to the power to which we raise k in (2.3). d corresponds to the
difference (of t and a multiple of f) and s corresponds to the sum (of f and d).

The proof of (2.3) will be by induction. We can immediately prove the base case.

Proposition 3.1 (Base Case). For all m ≥ 1, p ≥ 1, S(0,m, p) = 0.

Proof. Clear by the defining recursion, (2.1), and our conventions about polyomial coefficients
(2.2). �

Each of the four polynomial families, f, t, d, s, naturally gives rise to a triangular integer
array arising from listing coefficients in ascending powers of X. These four arrays are presented
in Tables 1 which provide conventions on row and column notation used. In these tables, the
capital T mnemonically stands for triangle, with the superscript indicating which of the four
families of rational functions are being described.

Example 3.2. We illustrate (2.3)-(2.5) and Tables 1 by deriving the polynomial T (n) in (1.2).

In (1.2), p = 3,m = 2. By Table 1, we have t(0)(X) = 1, t(1)(X) = 2, t(2)(X) = 8, t(3)(X) =
48 + 2X2. Hence, by (2.5)

T (n) =
1

21

(
3

0

)
n3 − 2

22

(
3

1

)
n2 +

8

23

(
3

2

)
n− 48 + 2 · 22

24

(
3

3

)
n0 =

1

2
n3 − 3

2
n2 +

6

2
n− 7

2
.

The four triangular arrays have many obvious patterns; these will be explored in Section 8.
For the proof of the Main Theorem we need the following identity.

Proposition 3.3. For i ≥ 1,

f (i)(X) =

i∑
j=0

(
i

j

)
Xi−jd(j)(X).

Proof. To make the notation clearer, we omit the arguments of polynomials. By (2.4), s(i) =

d(i) + f (i). Hence, by (2.4), for i ≥ 1,

f (i) =

j=i−1∑
j=0

(
i

j

)
Xi−1−js(j) =

j=i−1∑
j=0

(
i

j

)
Xi−1−j(f (j) + d(j)). (3.1)

Again, by (2.4), for i ≥ 1,

t(i) =

j=i∑
j=0

(
i

j

)
Xi−jf (j) = f (i) +

j=i−1∑
j=0

(
i

j

)
Xi−jf (j). (3.2)

By (2.4), d(i) = t(i) −Xf (i). Substituting (3.1) and (3.2) we have

d(i) = f (i) +

j=i−1∑
j=0

(
i

j

)
Xi−jf (j) −

j=i−1∑
j=0

(
i

j

)
Xi−j(f (j) + d(j)). (3.3)

The proposition requires us to prove

f (i) =
i∑

j=0

(
i

j

)
Xi−jd(j) = d(i) +

i−1∑
j=0

(
i

j

)
Xi−jd(j). (3.4)
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Table 1. The four table T (f), T (t), T (d), T (s). The table cell in the row with
h(i)(X), h ∈ {f, t, d, s} and column Xj contains the coefficient of Xj in the

polynomial h(i)(X). Illustrations are provided in each table.

The Table T (f). For example, f (1)(X) = 2−X
X0 X1 X2 X3 X4 X5 X6 X7

f (0)(X) 1

f (1)(X) 2 −1

f (2)(X) 8 −4 1

f (3)(X) 48 −24 8 −1

f (4)(X) 384 −192 80 −16 1

f (5)(X) 3840 −1920 960 −240 32 −1

f (6)(X) 46080 −23040 13440 −3840 728 −64 1

f (7)(X) 645120 −322560 215040 −67200 16128 −2184 128 −1

The Table T (t). For example, t(3)(X) = 48 + 2X2.
X0 X1 X2 X3 X4 X5 X6

t(0)(X) 1

t(1)(X) 2

t(2)(X) 8

t(3)(X) 48 2

t(4)(X) 384 32

t(5)(X) 3840 480 2

t(6)(X) 46080 7680 128

t(7)(X) 645120 134400 4368 2

The Table T (d). For example, d(0)(X) = 1−X
X0 X1 X2 X3 X4 X5 X6 X7

d(0)(X) 1 −1

d(1)(X) 2 −2 1

d(2)(X) 8 −8 4 −1

d(3)(X) 48 −48 26 −8 1

d(4)(X) 384 −384 224 −80 16 −1

d(5)(X) 3840 −3840 2400 −960 242 −32 1

d(6)(X) 46080 −46080 30720 −13440 3968 −728 64 −1

The Table T (s). For example, s(0)(X) = 2−X
X0 X1 X2 X3 X4 X5 X6 X7

s(0)(X) 2 −1

s(1)(X) 4 −3 1

s(2)(X) 16 −12 5 −1

s(3)(X) 96 −72 34 −9 1

s(4)(X) 768 −576 304 −96 17 −1

s(5)(X) 7680 −5760 3360 −1200 274 −33 1

s(6)(X) 92160 −69120 44160 −17280 4696 −792 65 −1
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Substituting (3.3) into (3.4) and cancelling f (i) from both sides of the resulting equation, we
see we must prove

0 =

j=i−1∑
j=0

(
i

j

)
Xi−jf (j) −

j=i−1∑
j=0

(
i

j

)
Xi−j(f (j) + d(j)) +

i−1∑
j=0

(
i

j

)
Xi−jd(j).

This completes the proof. �

4. Contributions of this paper

There are four main contributions of this paper over previous results.
First, the obvious contribution, that we are generalizing the Ledin and Shannon-Ollerton

results to all metallic sequences.
Second, this generalization introduces new techniques, the technique of simultaneous sys-

tems of recursions. Simultaneous systems have not been explored that much in the Fibonacci
Quarterly and they are a welcome venue for future researchers. Additionally, this paper uses
the shift operator to prove equality of polynomials.

Third, while the Shannon-Ollerton paper delightfully connects the proofs to known and
established OEIS sequences, this paper leads to four new integer triangular arrays.

Finally, the Shannon-Ollerton approach while also using an inductive approach reduced
the proof to certain identities with the Bernoulli numbers. The inductive proof in this paper
avoids reduction to the Bernoulli numbers. It was hoped that since the proof in this paper
avoids the Bernoulli numbers that the various conjectures about Bernoulli numbers made by
Shannon-Ollerton [1, Section 6] could be proven by the results of this paper; but so far a
straightforward proof has eluded me.

5. The Bar Algebraic-Shift Operator

Recall, that we will prove the Main Theorem, by showing that F (n), T (n) as defined by
(2.5) satisfy (2.3). To accomplish this proof we will need an algebraic operator that shifts
arguments of a target polynomial. Since the need for this algebraic operator arises naturally
in the proof, we motivate the need, and then define this operator, by beginning the proof of
the Main Theorem in this section.

To begin the proof, we assume m and p fixed, allowing us to smoothen the exposition by

writing S(n) instead of S(n,m, p) and Gn instead of G
(m)
n .

The proof is by induction; the base case, n = 0, has already been done in Proposition 3.1.
For an induction step we assume (2.3) true for the case n and proceed to prove it for the case
n + 1. That is, we must prove

S(n + 1) = F (n + 1)Gn+1 + T (n + 1)Gn+2 − T (0). (5.1)

But by the induction assumption, (2.3),

S(n + 1) = S(n) + (n + 1)pGn+1 = F (n)Gn + T (n)Gn+1 − T (0) + (n + 1)pGn+1.

By (2.1) we can write Gn = Gn+2 −mGn+1, reducing the last equation to the equivalent,

S(n + 1) = (T (n)−mF (n))Gn+1 + F (n)Gn+2 − T (0) + (n + 1)pGn+1 =

D(n)Gn+1 + F (n)Gn+2 − T (0) + (n + 1)pGn+1, (5.2)

the last equality arising from (2.6).
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Equating the right hand sides (5.1) and (5.2), we see that to accomplish the induction step
it suffices to prove

F (n + 1)Gn+1 + T (n + 1)Gn+2 = D(n)Gn+1 + F (n)Gn+2 + (n + 1)pGn+1. (5.3)

To prove (5.3) it suffices to equate coefficients of Gn+1, Gn+2. That is it suffices to prove

F (n + 1) = D(n) + (n + 1)p; T (n + 1) = F (n). (5.4)

At this point we get stuck. The traditional way of proving the equality of polynomials,
F (n + 1) = D(n), by equating corresponding coefficients in the polynomials, does not work
naturally here, since the values of the arguments on the two sides are different (n + 1 vs. n);
equating coefficients is therefore not justifiable.

This motivates the following definition. For a given polynomial R define R̄ as the polynomial
such that

R̄(x + 1) = R(x). (5.5)

The bar operator is simply a shift operator.
Prior to proving the existence and the form of the bar-shift operator in the next section, we

show how its existence simplifies the proof. To prove (5.4), it suffices, using (5.5), to prove

F (n + 1) = D(n) + (n + 1)p = D̄(n + 1) + (n + 1)p, T (n + 1) = F (n) = F̄ (n + 1). (5.6)

In turn, to prove (5.6), and hence to complete the proof of the Main Theorem, it suffices to
prove the two polynomial equalities of

F (X) = D̄(X) + Xp; T (X) = F̄ (X), (5.7)

by showing that corresponding coefficients are equal.

6. Properties of the Bar Shift Operator

To prove (5.7) we need properties of the bar-shift operator.

Lemma 6.1. R̄(X) always exists,

Proof. Using (2.2), define S(Y ) =

degree(R)∑
i=0

Ri(Y − 1)i. Then R̄(X) = S(X). �

Example 6.2. Let R(X) = X2. Then S(Y ) = R(Y −1) = Y 2−2Y +1, and therefore R̄(X) =
S(X) = X2−2X+1. We may then verify that R̄(X+1) = (X+1)2−2(X+1)+1 = X2 = R(X)
as required by (5.5).

As just pointed out, by writing R(X) = R((X+1)−1) we can obtain the coefficients of R̄(X)
from those of R(X). For a general polynomial R of degree q we have, using our conventions
about polynomial coefficients, (2.1), that

R̄q

R̄q−1

R̄q−2
...
R̄0

 =


1 0 0 . . . 0

−
(
q
1

) (
q−1
0

)
0 . . . 0(

q
2

) (
q−1
1

) (
q−2
0

)
. . . 0

...
...

...
...

...

(−1)q
(
q
q

)
(−1)q−1

(
q−1
q−1

)
(−1)q−2

(
q−2
q−2

)
. . . 1




Rq

Rq−1

Rq−2
...
R0


DECEMBER 2022 177



THE FIBONACCI QUARTERLY

By equating polynomial coefficients, this matrix equation generates q equations.

R̄q = Rq;

R̄q−1 = −
(
q

1

)
Rq +

(
q − 1

0

)
Rq−1;

R̄q−2 =

(
q

2

)
Rq −

(
q − 1

1

)
Rq−1 +

(
q − 2

0

)
Rq−2; (6.1)

. . .

R̄q−i =

i∑
j=0

(−1)i+j

(
q − j

i− j

)
Rq−j

We close this section with the following obvious observation.

Lemma 6.3. The polynomial shift operator is a linear operator (on polynomials).

Proof. Clear. �

7. Completion of the Proof of the Main Theorem

We continue the proof of the Main Theorem begun in Section 5. Recall we showed that
to prove (2.5) satisfies (2.3) it suffices to prove (5.7). Notice that the polynomial Xp on the
right-hand side of the first equation in (5.7) only contributes to the coefficient of Xi when
i = p. Accordingly we must deal with two cases. For each case we must prove coefficient
equality of the two asserted identities in (5.7).

Case Xi, i = p. Equation (5.7) is stated using the bar-shift operator. But by (6.1) D̄p = Dp

and F̄p = Fp. Thus it suffices to prove that

Fp = Dp + 1, Tp = Fp.

These equations are immediately proven using (2.4)- (2.6), which state

Fp =
1

m
,Tp =

1

m
, and Dp =

1−m

m
.

Case Xp−i, with i < p.
First we prove the second equation in (5.7),

Tp−i = F̄p−i.

By (2.5)

Tp−i = (−1)i
(
p

i

)
t(i)(m)

mi+1
.

By (2.4) we therefore have

Tp−i = (−1)i
(
p

i

)
1

mi+1

i∑
j=0

(
i

j

)
mi−jf (j)(m). (7.1)

By (6.1)

F̄p−i =

i∑
j=0

(
p− i

i− j

)
(−1)i+jFp−j .
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Applying (2.5) to this last equation we obtain

F̄p−i =
i∑

j=0

(
p− i

i− j

)
(−1)i+j

(
p

j

)
f (j)(m)(−1)j

1

mj+1
. (7.2)

To prove the second equation in (5.7), we must show that the left hand sides of (7.1) and
(7.2) are equal which follows since the right hand sides of (7.1) and (7.2) are equal, where we
have used the binomial coefficient identity, [5],(

p

i

)(
i

j

)
=

(
p− j

i− j

)(
p

j

)
. (7.3)

The proof of the first equation in (5.7) is similar. We produce a closed form for the left-
hand side by using (2.5) and Proposution 3.3, and similarly we produce a closed form for the
righthand side by using (6.1), (2.4), and (2.6). The equality of these two closed forms then
immediately follows by (7.3).

This completes the proof of the Main Theorem.

8. Fun Patterns and Identities

The four, integer, triangular arrays presented in Tables 1 are new, not previously found
in OEIS. Consistent with Fibonacci Quarterly tradition, we list a collection of patterns and
identities found in these triangles. Patterns exist both in the columns and diagonals. We
suffice with proving one of these since the proofs are all similar and follow from the defining
equation, (2.4). All identities hold for i, j ≥ 0, unless otherwise stated.

• sign(T
(f)
i,j ) = sign(T

(d)
i,j ) = sign(T

(s)
i,j ) = (−1)j ; sign(T

(t)
i,j ) = 1

• T
(f)
i,i = (−1)i ; T

(d)
i,i+1 = T

(s)
i,i+1 = (−1)i+1; T

(t)
i,2j+1 = 0

• T
(t)
2i+1,2i = 2; T

(t)
2i+2,2i = 22i+3

• T
(f)
i,0 = T

(t)
i,0 = T

(d)
i,0 = −T (d)

i,1 = 1
2T

(s)
i,0 = 2ii!

• For i ≥ 1, T
(f)
i,1 = 2i−1i!; T

(s)
i,1 = −3i!2i−1

• T
(d)
i,i = (−1)i2i; T

(f)
i+1,i = (−1)i2i+1; T

(s)
i,i = (−1)i(2i + 1)

Proof. We prove the fourth bulleted item. First note that by the construction of Tables 1, for
any symbol h ∈ {f, t, d, s}, by (2.2),

T
(h)
i,j = h

(i)
j .

Hence to prove T
(f)
i,0 = 2ii! it suffices to prove f

(i)
0 = 2if

(i−1)
0 , i ≥ 1.

However, by (2.4), for i ≥ 1, we have f
(i−1)
0 = t

(i−1)
0 = d

(i−1)
0 . To see this, note that by the

second equation in (2.4), the constant term of t(i) equals the constant term of f (i); similarly,

by the third equation in (2.4), the constant term of d(i) equals the constant term of t(i). This
can also be seen for initial values of i by inspecting Tables 1.

Additionally, by (2.4), since s(i−1) = f (i−1) + d(i−1), we therefore have s
(i−1)
0 = 2f

(i−1)
0 .

Finally, by (2.4), we have

f
(i)
0 =

(
i

i− 1

)
s
(i−1)
0 = 2if

(i−1)
0

as was required to prove. �
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9. Conclusion

This paper further generalizes the result of Shannon and Ollerton who in turn resurrected
a 50-year-old identity of Ledin. The proof was greatly facilitated by creating a system of four
simultaneous recursions two of which never enter the statement of the Main Theorem. We
believe this approach of simultaneous systems fruitful and applicable to other areas.
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