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Abstract. Zeckendorf proved that every positive integer n can be written uniquely as the
sum of non-adjacent Fibonacci numbers; a similar result holds for other positive linear recur-
rence sequences. These legal decompositions can be used to construct a game that starts with
a fixed integer n, and players take turns using moves relating to a given recurrence relation.
The game eventually terminates in a unique legal decomposition, and the player who makes
the final move wins.

For the Fibonacci game, Player 2 has the winning strategy for all n > 2. We give a non-
constructive proof that for the two-player (c, k)-nacci game, for all k and sufficiently large n,
Player 1 has a winning strategy when c is even and Player 2 has a winning strategy when c is
odd. Interestingly, the player with the winning strategy can make a mistake as early as the
c+ 1 turn, in which case the other player gains the winning strategy. Furthermore, we proved
that for the (c, k)-nacci game with players p ≥ c+ 2, no player has a winning strategy for any
n ≥ 3c2 + 6c + 3. We find a stricter lower boundary, n ≥ 7, in the case of the three-player
(1, 2)-nacci game. Then we extend the result from the multiplayer game to multialliance
games, showing which alliance has a winning strategy or when no winning strategy exists for
some special cases of multialliance games.

1. Introduction

1.1. History. The Fibonacci numbers, defined by F1 = 1, F2 = 2 and Fn+1 = Fn +Fn−1, are
a fascinating sequence with many interesting properties and applications [Kos]. Zeckendorf
[Ze] proved that every positive integer n can be uniquely written as the sum of distinct, non-
adjacent Fibonacci numbers. This sum is called the Zeckendorf decomposition of n, and is
why we defined the sequence to start 1, 2, 3, as if we start with a 0 or with two 1’s we lose
uniqueness. There is an extensive literature on Zeckendorf expansions and their generalizations
to other recurrence relations; see [Al, BEFM1, BEFM2, BBGILMT, BILMT, Br, CHHMPV,
Day, DDKMMV, FGNPT, GT, GTNP, Ha, HW, Ho, Ke, KKMW, Len, LLMMSXZ, MMMS,
MMMMS, MW1, MW2, Ste1] and the references therein.

Baird-Smith, Epstein, Flint, and Miller [BEFM1, BEFM2] created the Zeckendorf Game,
which is played on decompositions of integers as sums of Fibonacci numbers; we describe the
game in the next subsection. They proved that every game terminates in the Zeckendorf
decomposition, and in the two-player version, for any integer n > 2, Player 2 always has a
winning strategy.

We explore a generalization of their game. Similar to many other problems in the field,
we find significant progress is possible if we restrict what recurrences we study. This is sim-
ilar to work of Brower et. al. [BILMT], who proved that if the recurrence relation has all
coefficients positive integers, then the analysis of the distribution of gaps between summands
can be computed cleanly (the probability of a gap of length k ≥ 2 decays geometrically), and
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to Cordwell et. al. [CHHMPV], who proved that if the sequence of coefficients of the recur-
rence are positive non-increasing integers, then the generalized Zeckendorf decomposition is
summand minimal.

1.2. The Zeckendorf Game. We quote from [BEFM2] to describe the rules and play of the
Zeckedorf game created by Baird-Smith, Epstein, Flint and Miller.

We first introduce some notation. When we write {1n} or {Fn
1 }, we mean n copies of 1, the

first Fibonacci number. If we have 7 copies of F1, 4 copies of F3, and 2 copies of F4, we write
either {F 7

1 ∧ F 4
3 ∧ F 2

4 } or {17 ∧ 34 ∧ 52}.
Definition 1.1. (The Two-Player Zeckendorf Game). At the beginning of the game, there is
an unordered list of n 1’s, so the initial list is {Fn

1 }. On each turn, a player can do one of the
following moves.

(1) If the list contains two consecutive Fibonacci numbers, Fi−1 and Fi, then a player can
change these to Fi+1. We denote this move {Fi−1 ∧ Fi → Fi+1}.

(2) If the list has two of the same Fibonacci number, Fi and Fi, then
(a) if i = 1, a player can change F1 and F1 to F2, denoted by {F1 ∧ F1 → F2},
(b) if i = 2, a player can change F2 and F2 to F1 and F3, denoted by {F2 ∧ F2 →

F1 → F3}, and
(c) if i ≥ 3, a player can change Fi and Fi to Fi−2 and Fi+1, denoted by {Fi ∧ Fi →

Fi−2 ∧ Fi+1}.
The players alternative moving. The game ends when a player makes the Zeckendorf decom-
position of n, for which no further moves are possible.

Proofs that the Zeckendorf game is playable and ends at the Zeckendorf decomposition can
be found in [BEFM2]. The same paper also gives a non-constructive proof that for all n > 2,
player 2 has a winning strategy. There are many papers expanding these results in several
directions, including the winning strategy of multiplayer and multialliance Zeckendorf Games
[CDH–1], and bounds of Zeckendorf games [CDH–2]. Furthermore, there are some other inter-
esting games stemming from the Fibonacci Zeckendorf Game, including the Fibonacci Quilt
game [MN], Bergman game [BDD–], Deterministic Zeckendorf game [LLMMSXZ] and Gen-
eralized Zeckendorf games [BCD–]. As this paper mainly focuses on Generalized Zeckendorf
games, below is a detailed introduction of this game.

1.3. Generalized Zeckendorf Games. The Zeckendorf game as described so far only con-
cerns a game on the Fibonacci sequence. However, using the Generalized Zeckendorf theorem,
[BEFM1] defined the Generalized Zeckendorf Game for certain positive linear recurrence se-
quences. We quote from [BEFM1] to describe the sequences and how to play the game.

Definition 1.2. ((c,k)-nacci Numbers). We call any sequence defined by a recurrence Si+1 =
cSi + cSi−1 + · · ·+ cSi−k a generalized k-nacci sequence with constant c. The initial conditions
are as follows: S1 = 1, and for 1 ≤ n < k + 1 we have Si+1 = cSi + cSi−1 + · · ·+ cS1 + 1. The
terms St are called (c, k)-nacci numbers.

Definition 1.3. (The Two-Player (c, k)-nacci Zeckendorf Game). Two people play the (c, k)-
nacci Zeckendorf Game (a special Generalized Zeckendorf Game), for the (c, k)-nacci numbers.
At the beginning of the game, we have an unordered list of n 1’s. If i < k + 1, Si+1 =
cSi + cSi−1 + · · · + cS1 + 1. If i ≥ k, Si+1 = cSi + cSi−1 + · · · + cSi−k. Therefore our initial
list is {Sn

1 }. On each turn we can do one of the following moves.

(1) If our list contains k+ 1 consecutive k-nacci numbers each with multiplicity c, then we
can change these to Si+1. We denote this move {cSi−k ∧ cSi−k+1 ∧ · · · ∧ cSi → Si+1}.
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(2) If our list contains consecutive k-nacci numbers with multiplicity c up to an index less
than or equal to k, and S1 with multiplicity c + 1, we can do the move {(c + 1)S1 ∧
cS2 ∧ · · · ∧ cSi → Si+1}.

(3) If the list has c + 1 of the same k-nacci number Si, then
(a) If i = 1, then we can change (c+1)S1 to S2, denoting this move {(c+1)S1 → S2};
(b) If 1 < i < k + 1, then we can change (c + 1)Si to Si+1, denoted by {(c + 1)Si →

Si+1};
(c) If i = k + 1, then we can do the move {(c + 1)Si → Si+1 ∧ S1}; and
(d) If i > k + 1, then we can do the move {(c + 1)Si → Si+1 ∧ cSi−k−1}.

Players alternate moving until no moves remain.

Proofs that certain Generalized Zeckendorf games are playable and end at Generalized
Zeckendorf decomposition can be found in [BEFM1]. For other results on the Zeckendorf
game and some of its generalizations, see [BCD–, BDD–, CDH–1, CDH–2, LLMMSXZ, MN].

1.4. Main Results. We find winning strategies for some Generalized Zeckendorf games, and
also consider multiplayer and multialliance versions of the game. First, we start with exploring
the Tribonacci Game, which is a special case of the Generalized (c, k)-nacci Zeckendorf Game.
In the following two results, we find which player has a winning strategy for the two-player
and multiplayer Tribonacci Games.

Lemma 1.4. For all n > 9, Player 2 has the winning strategy for the two-player Tribonacci
Game.

Theorem 1.5. For the multiplayer Tribonacci game, when n ≥ 7, for any p ≥ 3 no player
has a winning strategy.

Next, we extend our results to the Generalized (c, k)-nacci Zeckendorf Game. Our main
result, shown below, is for the two-player (c, k)-nacci game: we find a general pattern for which
player has a winning strategy for any positive integers c and k.

Theorem 1.6. In a (c, k)-nacci game, for any c ≥ 1, k ≥ 1, n ≥ (c + 1)3 + (c + 1), when c
is odd, player 2 always has a winning strategy; when c is even, player 1 always has a winning
strategy.

This significantly extends the previous results of winning strategies for the 2-player Zeck-
endorf game. One interesting question to ask is how quickly a player with a winning strategy
can make a mistake to lose the winning strategy, which we address in the following theorem.

Theorem 1.7. For the (c, k)-nacci game, where k > 1, if the player with the winning strategy
makes a mistake as early as turn c + 1, the opposing player can steal the winning strategy.

Finally, we shift our focus to the multiplayer and multialliance Generalized Zeckendorf
Games. In the following theorems, we investigate several interesting types of alliances and
consider when a player or team is guaranteed a winning strategy.

Theorem 1.8. When n ≥ 3c2 + 6c + 3, for any p ≥ c + 2, no player has a winning strategy
in the Multiplayer Generalized Zeckendorf Game.

Theorem 1.9. For any n ≥ 2d2 + 4d and t ≥ c + 2, if each team has exactly d = t − c
consecutive players, then no team has a winning strategy in the Team Generalized Zeckendorf
Game.

Theorem 1.10. Let p ≥ 6 and c = 1. If there are two teams, one with p− 2 players and the
other with two players, then the larger team has a winning strategy for n ≥ 36 in the Team
Generalized Zeckendorf Game.
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2. The Multiplayer Tribonacci Game

We start our investigation of (c, k)-nacci games with the Tribonacci game, which is the
(1, 2)-nacci game. We define the Tribonacci numbers as T1 = 1, T2 = 2, T3 = 4, Ti+1 =
Ti + Ti−1 + Ti−2. The Tribonacci game is playable since it is a type of (c, k)-nacci game, and
the types of moves allowed follow the form described for Generalized Zeckendorf games with
c = 1 and k = 2. We first explore winning strategies of the multiplayer Tribonacci Game.

Theorem 1.5. For the multiplayer Tribonacci game, when n ≥ 7, for any p ≥ 3 no
player has a winning strategy.

In general, in a finite multiplayer game consisting of p ≥ 3 players, if Player k has a winning
strategy (where 1 ≤ k ≤ p), then no matter which steps the other p− 1 players take, there is
always a combination of moves for which Player m wins this game.

The following proof of Theorem 1.5 uses a technique which we call a stealing strategy. A
stealing strategy means that if we first suppose some Player k has a winning strategy (where
1 ≤ k ≤ p), then the other p − 1 players can consider two combinations of moves of different
lengths that finish at the same position. For one such combination one of the p−1 players will
end up in the same position that Player k had a winning strategy, and by stealing Player k’s
winning strategy we get a contradiction. This technique is used in proving many Theorems
and Lemmas of this paper, and we now use it to prove Theorem 1.5.

Proof. Note: In all the following proofs of this section, Player 0 ≡ Player p (under mod p),
and the player following Player p is Player 1.

To prove Theorem 1.5, we introduce the following property.

Property 2.1. Suppose Player m has a winning strategy (1 ≤ m ≤ p). For any p ≥ 3, any
winning path of Player m does not contain the following 3 consecutive steps unless Player m
is the player who takes step 2 below.

Step 1: 1 ∧ 1→ 2.

Step 2: 1 ∧ 1→ 2.

Step 3: 2 ∧ 2→ 4.

Proof. Suppose Player m has a winning strategy and there is a winning path that contains
these 3 consecutive steps. Then there exists a Player a where 1 ≤ a ≤ p, a 6= m, such that
Player a− 1 (mod p) can take step 1, Player a can take step 2 and Player a + 1 (mod p) can
take step 3.

Note that instead of doing {1∧ 1→ 2}, Player a can do {1∧ 1∧ 2→ 4}. Then Player m− 1
(mod p) has a winning strategy, which is a contradiction.

Therefore, by using the stealing strategy, Property 2.1 holds. �

We now prove Theorem 1.5 by splitting it into the following two lemmas.

Lemma 2.2. When n ≥ 11, for any p ≥ 4 no player has a winning strategy.

Proof. Suppose Player m has a winning strategy (1 ≤ m ≤ p). Consider the following two
cases.
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Case 1: If m ≥ 4, then players 1, 2, and 3 can do the following.

Player 1: 1 ∧ 1→ 2.

Player 2: 1 ∧ 1→ 2.

Player 3: 2 ∧ 2→ 4.

This contradicts Property 2.1, so Player m does not have winning strategy for any m ≥ 4.
Case 2: If m ≤ 3, then after Player m’s first move, players m + 1,m + 2,m + 3 can do the

following.

Player m + 1: 1 ∧ 1→ 2.

Player m + 2: 1 ∧ 1→ 2.

Player m + 3: 2 ∧ 2→ 4.

This contradicts Property 2.1, so Player m does not have winning strategy for any m ≤ 3.
By Cases 1 and 2, Lemma 2.2 is proved. �

Lemma 2.3. When n ≥ 13, for p = 3 no player has a winning strategy.

Proof. Suppose Player m has a winning strategy (1 ≤ m ≤ 3). After Player m’s first move,
Players m + 1 and m + 2 can do the following (if m = 3, we can start the following process
from the first step of the game).

Step 1: Player m + 1: 1 ∧ 1→ 2.

Step 2: Player m + 2: 1 ∧ 1→ 2.

Step 3: Player m: Player m can do anything.

Note that if Player m does {2∧ 2→ 4}, then these three moves violate Property 2.1, which is
a contradiction.

If Player m does anything else other than {2∧ 2→ 4}, then after Player m’s first move, the
other two players can do the following (continuing after the first 3 steps listed above with 2
more steps; if m = 3, Player m + 1 is Player 1).

Step 1: Player m + 1: 1 ∧ 1→ 2.

Step 2: Player m + 2: 1 ∧ 1→ 2.

Step 3: Player m: player m can do anything.

Step 4: Player m + 1: 1 ∧ 1→ 2.

Step 5: Player m + 2: 2 ∧ 2→ 4.

Note that Step 3 removes at most one 2, but Step 1 and Step 2 generate two 2’s in total, so
there will be at least one 2 remaining after step 3. Therefore, Player m+1 can do {1∧1∧2→ 4}
instead in Step 4. By doing so, now Player m − 1 (mod p) has winning strategy, which is a
contradiction.

Thus by using the stealing strategy, Lemma 2.3 is proved. �

By Lemmas 2.2 and 2.3, and brute force computations for 7 ≤ n ≤ 12, Theorem 1.5 is
proved. �
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player turn

1 1 1n

2 2 1(n−2) ∧ 2

1 3 1(n−4) ∧ 4

2 4 1(n−6) ∧ 2 ∧ 4

1 5 1(n−7) ∧ 7 1(n−8) ∧ 4(2)

2 6 1(n−10) ∧ 2 ∧ 4(2) 1(n−7) ∧ 7

1 7 1(n−9) ∧ 2 ∧ 7

Figure 1. Tribonacci tree depicting the proof of Lemma 1.4. Red indicates a
winning strategy for Player 1, and blue indicates a winning strategy for Player
2. Green indicates a winning strategy for both players, which is a contradiction.

3. Winning Strategies for Two-Player Generalized Zeckendorf Games

Expanding off our work on the Tribonacci Game, we now prove several results on the more
general (c, k)-nacci Zeckendorf Game. We start with proving the winning strategy of two-
player (c, k)-nacci Zeckendorf Game.

Theorem 1.6. In a (c, k)-nacci game, for any c ≥ 1, k ≥ 1, n ≥ (c + 1)3 + (c + 1),
when c is odd, player 2 always has a winning strategy; when c is even, player 1 always has a
winning strategy.

Proof. To help the reader better understand this theorem and why the value of k does not
affect which player has the winning strategy, we first prove a special case of this theorem for
the Tribonacci Game as described in the following lemma.

Lemma 1.4. For all n > 9, Player 2 has the winning strategy for the two-player Tribonacci
Game.

Proof. Suppose for contradiction that Player 1 has a winning strategy for n > 9. Fix n > 9,
then {1(n)} has a winning strategy for Player 1 by assumption. Player 1 must also have a

winning strategy for {1(n−2) ∧ 2} in row 2 because it is the only child of {1(n)}. Since row 2
is Player 2’s turn but Player 1 has a winning strategy, both nodes in row 3 must also have
winning strategies for Player 1. In row 4, {1(n−6) ∧ 2 ∧ 4} must have a winning strategy for

Player 1 since it is the only child of {1(n−4) ∧ 4} in row 3. Since row 4 is Player 2’s turn but
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Player 1 has a winning strategy, both children must have winning strategies for Player 1. This
includes {1(n−7) ∧ 7} in row 5, so the equivalent node in row 6 must have a winning strategy

for Player 2, and its only child {1(n−9) ∧ 2 ∧ 7} in row 7 must also have a winning strategy

for Player 2. In row 6, {1(n−10) ∧ 2 ∧ 4(2)} must have a winning strategy for Player 1 since at

least one child of {1(n−8) ∧ 4(2)} in row 5 must have a winning strategy for Player 1. However,

since row 6 is Player 2’s turn and Player 1 has a winning strategy for {1(n−10) ∧ 2 ∧ 4(2)},
its child {1(n−9) ∧ 2 ∧ 7} in row 7 must also have a winning strategy for Player 1. This is a
contradiction, so Player 2 has a winning strategy for n > 9. �

We now prove Theorem 1.6 using the following three lemmas for the cases k = 1, k = 2,
and k ≥ 3. In all of the proofs below, we let d = c− 1.

Lemma 3.1. In a (c, 1)-nacci game, for any c ≥ 1, n ≥ (c+1)3+(c+1), when c is odd, Player
2 always has a winning strategy; when c is even, Player 1 always has a winning strategy.

Proof. We consider an equivalent statement: In a (d, 1)-nacci game, where d = c− 1, for any
c ≥ 2, n ≥ (c)3 + (c), when d is odd, Player 2 always has a winning strategy; when d is even,
Player 1 always has a winning strategy. We first consider the case when d is odd, and we
suppose for contradiction that player 1 has a winning strategy. From row 1 to row c, each
node only has one child, so player 1 has a winning strategy for all these c rows. Row c is Player

2’s turn but player 1 has a winning strategy for {1(n−c2+c) ∧ c(c−1)}, so all of its children in

row c+1 have a winning strategy for Player 1. The node {1(n−c2−c+1)∧ c∧ cc−1} in row c+2

is the only child of {1(n−c2+1)∧ cc−1} in row c+1, so it must also have a winning strategy for
player 1. From row c + 2 to row 2c, each node only has one child, so Player 1 has a winning
strategy for all these rows. We can repeat the steps used from row c+1 to row 2c to show that

Player 1 has a winning strategy until {1(n−c3+2c−1) ∧ c(c−1) ∧ (cc− 1)(c−1)} in row c2. Row c2

is Player 2’s turn, so player 1 has a winning strategy for all of its children in row c2 + 1. Since

{1(n−c3+2c−1)∧ccc−2c+1} in row c2 +1 has only one child, {1(n−c3+2c−1)∧c∧ccc−2c+1} in
row c2 + 2 must also have a winning strategy for Player 1. Then Player 2 must have a winning
strategy for the equivalent node in row C2 +3. However, since player 1 has a winning strategy

for {1(n−c3−c) ∧ (cc− 1)(c)} in row c2 + 1, at least one of its children must also have a winning

strategy for player 1. Both children are parents to the node {1(n−c3+c−1) ∧ c∧ ccc− 2c+ 1} in

row c2 + 3, and since row c2 + 2 is Player 2’s turn, {1(n−c3+c−1)∧ c∧ ccc− 2c+ 1} in row c2 + 3
must also have a winning strategy for Player 1. This is a contradiction, so Player 2 must have
a winning strategy.

A similar proof also applies to the case when d is even, which is shown in Appendix A. �

Lemma 3.2. In a (c, 2)-nacci game, for any c ≥ 1, n ≥ (c+1)3+(c+1), when c is odd, player
2 always has a winning strategy; when c is even, player 1 always has a winning strategy.

Proof. The proof of Lemma 3.2 follows the same format of the proof of Lemma 3.1, but the
nodes are slightly different because of the different k-value. �

Lemma 3.3. In a (c, k)-nacci game, for any c ≥ 1, k ≥ 3, n ≥ (c + 1)3 + (c + 1), when c is
odd, Player 2 always has a winning strategy; when c is even, Player 1 always has a winning
strategy.

Proof. The proof of Lemma 3.3 follows the same format of the proof of Lemma 3.1, but the
nodes are slightly different because of the different k-value. We provide a detailed proof in
Appendix C. �
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player turn

1 1 1n

2 2 1(n−c) ∧ c

2 c 1(n−c2+c) ∧ c(c−1)

1 c + 1 1(n−c2) ∧ c(c) 1(n−c2+1) ∧ cc− 1

2 c + 2 1(n−c2−c+1) ∧ c ∧ cc− 1

2 2c 1(n−2c2+c+1) ∧ c(c−1) ∧ cc− 1

1 2c + 1 1(n−2c2+1) ∧ c(c) ∧ cc− 1 1(n−2c2+2) ∧ (cc− 1)(2)

2 2c + 2 1(n−2c2−c+2) ∧ c ∧ (cc− 1)(2)

2 c2 1(n−c3+2c−1) ∧ c(c−1) ∧ (cc− 1)(c−1)

1 c2 + 1 1(n−c3+c−1) ∧ c(c) ∧ (cc− 1)(c−1) 1(n−c3−c) ∧ (cc− 1)(c) 1(n−c3+2c−1) ∧ ccc− 2c + 1

2 c2 + 2 1(n−c3) ∧ c ∧ (cc− 1)(c) 1(n−c3+2c−1) ∧ ccc− 2c + 1 1(n−c3+c−1) ∧ c ∧ ccc− 2c + 1

1 c2 + 3 1(n−c3+c−1) ∧ c ∧ ccc− 2c + 1

Figure 2. (d, 1)-nacci tree depicting the proof of Theorem 3.1, where d = c−1
is odd. Red indicates a winning strategy for Player 1, and blue indicates a
winning strategy for Player 2. Green indicates a winning strategy for both
players, which is a contradiction.

Theorem 1.6 is proved by Lemmas 3.1, 3.2, and 3.3 �

We now prove the following result on the earliest possible turn a player can lose their win-
ning strategy for the (c, k)-nacci game.

Theorem 1.7. For the (c, k)-nacci game, where k > 1, if the player with the winning
strategy makes a mistake as early as turn c + 1, the opposing player can steal the winning
strategy.

Proof. We prove Theorem 1.7 by splitting it into the following two lemmas.

Lemma 3.4. When c is even Player 1 has the winning strategy for the (c, k)-nacci game, but
Player 2 can steal the winning strategy if Player 1 makes a mistake as early as turn c + 1.

Proof. Let d = c−1. We have previously shown that when c is even, Player 1 has the winning
strategy for the (c, k)-nacci game. Equivalently, let d = c − 1 be even, then Player 1 has the
winning strategy for the (d, k)-nacci game. In this game there is only one possible move for

each of the first d turns, so Player 1 has the winning strategy until {1(n−c2+c) ∧ c(c−1)} in row
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player turn

1 1 1n

2 2 1(n−c) ∧ c

2 c 1(n−c2+c) ∧ c(c−1)

1 c + 1 1(n−c2) ∧ c(c) 1(n−c2) ∧ cc

2 c + 2 1(n−c2−c) ∧ c ∧ cc

2 2c 1(n−2c2+c) ∧ c(c−1) ∧ cc

1 2c + 1 1(n−2c2) ∧ c(c) ∧ cc 1(n−2c2) ∧ cc(2)

2 2c + 2 1(n−2c2−c) ∧ c ∧ cc(2)

2 c2 1(n−c3+c) ∧ c(c−1) ∧ cc(c−1)

1 c2 + 1 1(n−c3) ∧ c(c) ∧ cc(c−1) 1(n−c3) ∧ cc(c) 1(n−c3+1) ∧ ccc− 1

2 c2 + 2 1(n−c3−c) ∧ c ∧ cc(c) 1(n−c3+1) ∧ ccc− 1 1(n−c3−c+1) ∧ c ∧ ccc− 1

1 c2 + 3 1(n−c3−c+1) ∧ c ∧ ccc− 1

Figure 3. (d, 2)-nacci tree depicting the proof of Theorem 3.2, where d = c−1
is odd. Red indicates a winning strategy for Player 1, and blue indicates a
winning strategy for Player 2. Green indicates a winning strategy for both
players, which is a contradiction.

c. This means that at least one of the nodes in row c + 1 must have a winning strategy for

Player 1. Suppose {1(n−c2) ∧ c(c)} in row c + 1 has a winning strategy for Player 1, then since
it is Player 2’s turn, all three of its children in row c + 2 must have a winning strategy for

Player 1. Since {1(n−c2+c) ∧ c∧ cc} in row c+ 2 has a winning strategy for Player 1, its parent

{1(n−c2)∧cc} in row c+1 must as well. However, Player 2 can steal Player 1’s winning strategy

from the equivalent node in row c+2, so {1(n−c2)∧cc} in row c+1 also has a winning strategy

for Player 2. From this contradiction, {1(n−c2)∧c(c)} in row c+1 must have a winning strategy
for Player 2. Therefore, if Player 1 makes a mistake as early as turn c, Player 2 can steal the
winning strategy. This analysis has been for the (c − 1, k)-nacci game, so in the (c, k)-nacci
game, Player 2 can steal the winning strategy as early as turn c + 1. �
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player turn

1 1 1n

2 2 1(n−c)

2 c 1(n−c2+c) ∧ c(c−1)

1 c + 1 1(n−c2) ∧ c(c) 1(n−c2) ∧ cc

2 c + 2 1(n−c2−c) ∧ c ∧ cc

2 2c 1(n−2c2+c) ∧ c(c−1) ∧ cc

1 2c + 1 1(n−2c2) ∧ c(c) ∧ cc 1(n−2c2) ∧ cc(2)

2 2c + 2 1(n−2c2−c) ∧ c ∧ cc(2)

2 c2 1(n−c3+c) ∧ c(c−1) ∧ cc(c−1)

1 c2 + 1 1(n−c3) ∧ c(c) ∧ cc(c−1) 1(n−c3) ∧ cc(c) 1(n−c3) ∧ ccc

2 c2 + 2 1(n−c3−c) ∧ c ∧ cc(c) 1(n−c3) ∧ ccc 1(n−c3−c) ∧ c ∧ ccc

1 c2 + 3 1(n−c3−c) ∧ c ∧ ccc

Figure 4. (d, k)-nacci tree depicting the proof of Theorem 3.3, where d = c−1
is odd and k ≥ 3. Red indicates a winning strategy for Player 1, and blue
indicates a winning strategy for Player 2. Green indicates a winning strategy
for both players, which is a contradiction.

Lemma 3.5. When c is odd Player 2 has the winning strategy for the (c, k)-nacci game, but
Player 1 can steal the winning strategy if player 2 makes a mistake as early as turn c + 1.

Proof. Once again we consider the (c − 1, k)-nacci game, but now c is even and Player 2 has
the winning strategy. However, since turn c is now Player 2’s turn, the remainder of the proof
is identical to the proof of Lemma 3.4, but with the positions switched. �

By Lemmas 3.4 and 3.5, Theorem 1.7 is proved. �

4. Multiplayer and Multialliance Generalized Zeckendorf Games

After working on the winning strategy of two-player (c, k)-nacci Zeckendorf Game, we now
move to specific cases of the multiplayer and multialliance (c, k)-nacci Game, and our main
results include Theorem 1.8, Theorem 1.9, and Theorem 1.10. These results are extensions
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player turn

1 1 1n

2 2 1(n−c) ∧ c

1 c 1(n−c2+c) ∧ c(c−1)

2 c + 1 1(n−c2) ∧ c(c) 1(n−c2) ∧ cc

1 c + 2 1(n−c2) ∧ cc 1(n−c2−c) ∧ c(c+1) 1(n−c2−c) ∧ c ∧ cc

Figure 5. (d, k)-nacci tree depicting the proof of Theorem 1.7, where d = c−1.
Red indicates a winning strategy for Player 1, and blue indicates a winning
strategy for Player 2.

of previous theorems on the Multiplayer Zeckendorf Game that is played on the Fibonacci
numbers.

Theorem 1.8. When n ≥ 3c2 + 6c + 3, for any p ≥ c + 2, no player has a winning
strategy in the Multiplayer Generalized Zeckendorf Game.

Proof. Note: In all the following proofs of this section, Player 0 = Player p (under mod p).
To prove Theorem 1.8, we introduce the following property.

Property 4.1. Suppose Player m has a winning strategy (1 ≤ m ≤ p). For any p ≥ 3, if
Player m is not the player who takes step c + 1 listed below, then any winning path of player
m does not contain the following c + 2 consecutive steps.

Step 1: (c + 1)S1 → S2.

Step 2: (c + 1)S1 → S2.

...

Step c + 1: (c + 1)S1 → S2.

Step c + 2:

{
(c + 1)S2 → S3 ∧ S1 if k = 1,

(c + 1)S2 → S3 if k > 1.

(4.1)

Proof. Suppose Player m has a winning strategy and there is a winning path that contains
these c+ 2 consecutive steps. Then there exists a Player a where 1 ≤ a ≤ p, a 6= m, such that
Player a− c (mod p) can take step 1, Player a− c + 1 (mod p) can take step 2, continuing in
this way until Player a takes step c + 1 and Player a + 1 (mod p) can take step c + 2.

Note that if k = 1, Player a can instead do {cS1 ∧ cS2 → S3}, and if k > 1, Player a can
instead do {(c+ 1)S1 ∧ cS2 → S3}. Then Player m− 1 (mod p) has a winning strategy, which
is a contradiction. �
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We now prove Theorem 1.8 by splitting it into the following two lemmas.

Lemma 4.2. When n ≥ 2c2 + 5c + 3, for any p ≥ c + 3 no player has a winning strategy.

Proof. Suppose Player m has a winning strategy (1 ≤ m ≤ p). Consider the following two
cases.

Case 1: If m ≥ c + 3, then Players 1, 2, . . ., c + 1, c + 2 can do the sequence of c + 2 moves
described in Property 4.1. This contradicts Property 4.1, so player m does not have a winning
strategy for any m ≥ c + 3.

Case 2: If m ≤ c + 2, then after Player m’s first move, Players m + 1, m + 2, . . ., m + c + 2
(mod p) can do the sequence of c+ 2 moves described in Property 4.1. This contradicts Prop-
erty 4.1, so player m does not have a winning strategy for any m ≤ c + 2.

Case 2 requires a maximum of 2c + 3 steps of the move {(c + 1)S1 → S2}, which requires
that n ≥ 2c2 + 5c + 3. By Case 1 and Case 2, Lemma 4.2 is proved. �

Lemma 4.3. When n ≥ 3c2 + 6c + 3, for p = c + 2 no player has a winning strategy.

Proof. Suppose Player m has a winning strategy (1 ≤ m ≤ c+2). On their first moves, Players
m + 1, m + 2, . . ., m + c + 1 (mod p) can do the following sequence of moves.

Step 1: Player m + 1: (c + 1)S1 → S2.

...

Step c + 1: Player m + c + 1: (c + 1)S1 → S2.

Step c + 2: Player m: Player m can do anything.

(4.2)

Note that if Player m does the move {(c+ 1)S2 → S3 ∧ S1} if k = 1, or {(c+ 1)S2 → S3} if
k > 1, then steps 1 through c+ 2 violate Property 4.1, which is a contradiction. Player m+ 1
can then continue with the following sequence of moves.

Step c + 3: Player m + 1: (c + 1)S1 → S2.

...

Step 2c + 2: Player m + c: (c + 1)S1 → S2.

Step 2c + 3: Player m + c +1:

{
(c + 1)S2 → S3 ∧ S1 if k = 1,

(c + 1)S2 → S3 if k > 1.

(4.3)

Note that step c+ 2 removes at most c of S1, but steps 1 through c+ 1 generate c+ 1 of S1,
so there will be at least one remaining after step c + 2. However, on step 2c + 2 Player m + c
can instead do {cS1 ∧ cS2 → S3} if k = 1, or {(c + 1)S1 ∧ cS2 → cS3} if k > 1. By doing so
Player m− 1 (mod p) now has a winning strategy which is a contradiction.

The steps described above requires a maximum of 3c+3 steps of the move {(c+1)S1 → S2},
which requires that n ≥ 3c2 + 6c + 3. This proves that for p = c + 2 no player has a winning
strategy when n ≥ 3c2 + 6c + 3. �

Theorem 1.8 is proved by Lemmas 4.1 and 4.2.
�
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Theorem 1.9. For any n ≥ 2d2 + 4d and t ≥ c + 2, if each team has exactly d = t − c
consecutive players, then no team has a winning strategy in the Team Generalized Zeckendorf
Game.

Proof. For the following proofs, team 0 = team t (under mod t). Note that after player td
the next player to move is player 1, and we regard player td and player 1 as two consecutive
players. Therefore, without loss of generality, in all the following proofs, we assume that
team 1 has players 1, 2, 3, . . . , d; team 2 has players d + 1, d + 2, . . . , 2d; team 3 has players
2d + 1, 2d + 2, . . . , 3d and so on.

To prove Theorem 1.9, we introduce the following property.

Property 4.4. Suppose team m has a winning strategy (1 ≤ m ≤ t). For any t ≥ c + 2 and
d = t− c, if none of the middle d players listed below belong to team m, then any winning path
for team m does not contain the following 3d (for case 1) or (c + 2)d (for case 2) consecutive
steps.
Case 1: Let c = 1.

First d players all do: (2)S1 → S2.

Middle d players all do: (2)S1 → S2.

Last d players all do:

{
(2)S2 → S3 ∧ S1 if k = 1,

(2)S2 → S3 if k > 1.

(4.4)

Case 2: Let c > 1.

First c players all do: (c + 1)S1 → S2.

Player c + 1: (c + 1)S1 → S2.

Player c + 2:

{
(c + 1)S2 → S3 ∧ S1 if k = 1,

(c + 1)S2 → S3 if k > 1.

(4.5)

Repeat this sequence of c + 2 steps d times.

Proof. Suppose team m has a winning strategy and there is a winning path for team m that
contains these 3d (for case 1) or (c + 2)d (for case 2) consecutive steps. Then there exists a
Player q (1 ≤ q ≤ p) that belongs to team m and takes the last move of the game.

Case 1: The middle d players, instead of doing the move {(2)S1 → S2}, can instead do the
following: {

S1 ∧ S2 → S3 if k = 1,

(2)S1 ∧ S2 → S3 if k > 1.

By doing so Player q − d becomes the player who takes the last move. Since team m has d
players, Player q − d belongs to team m− 1 (mod t). Therefore team m− 1 (mod t) has the
winning strategy which is a contradiction.

Case 2: Instead of doing the move {(c + 1)S1 → S2}, player c + 1 can instead do the
following: {

cS1 ∧ cS2 → S3 if k = 1,

(c + 1)S1 ∧ cS2 → S3 if k > 1.

By doing so Player q− 1 becomes the player to take the last move. There are td total players
and since t ≥ c + 2 there are at least (c + 2)d total players. When the sequence of moves in
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case 2 is repeated d times, Player q − d becomes the player to take the last move, which is a
contradiction. �

We now prove Theorem 1.9 by splitting it into the following two lemmas.

Lemma 4.5. For any t ≥ c + 3 and d = t − c, no team has a winning strategy when n ≥
3c2 + 15c + 12 and t ≥ 2c.

Proof. Suppose team m has a winning strategy (1 ≤ m ≤ t). Note that the last player in team
m is player md, so the first player after team m is player md+ 1 (mod p). There are t− 1 ≥ d
other teams, and each team has d players, where d ≥ 3. We now consider two separate cases.

Case 1: Let c = 1. There are d2 ≥ 3d consecutive players from teams other than team m.
After all the members of team m’s first move, the next d teams can all do the following.

Players from md + 1 to (m + 1)d do: (2)S1 → S2.

Players from (m + 1)d + 1 to (m + 2)d do: (2)S1 → S2.

Players from (m + 2)d + 1 to (m + 3)d do:

{
(2)S2 → S3 ∧ S1 if k = 1,

(2)S2 → S3 if k > 1.

(4.6)

Since all of these 3d players are not from team m, this contradicts Property 4.4.

Case 2: Let c > 1. The stealing strategy described in Case 2 of the proof of Property 4.4
takes c + 1 moves for each repetition, and (c + 1)d moves total. There are d2 ≥ (c + 1)d
consecutive players from other teams, so after all the members of team m complete their first
move, the next d teams can do the sequence of (c+ 1)d moves. This contradicts Property 4.4,
so team m does not have a winning strategy. �

Lemma 4.6. For any t = c + 2 and d = 2, no team has a winning strategy when n ≥
6c2 + 18c + 12 and t ≥ 2c.

Proof. Suppose team m has a winning strategy (1 ≤ m ≤ t). For any c, after all the members
of team m’s first move, the remaining players can do the following.

Step 1: (c + 1)S1 → S2.

...

Step 2c + 2: (c + 1)S1 → S2.

Step 2c + 3: Anything since this player is on team m.

Step 2c + 4: Anything since this player is on team m.

Step 2c + 5: (c + 1)S1 → S2.

...

Step 4c + 6: (c + 1)S1 → S2.

Step 4c + 7: Anything since this player is on team m.

Step 4c + 8: Anything since this player is on team m.

(4.7)

We now consider the following two cases.
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Case 1: If steps 2c+3 and 2c+4 are both (c+1)S2 → S3∧S1 when k = 1 or (c+1)S2 → S3

when k > 1, then steps 1 through 2c+ 4 form the sequence described in Property 2. The same
is true for steps 4c+7 and 4c+8 which would make the sequence in steps 2c+5 through 4c+8.

Case 2: If one of the steps from 2c + 3 and 2c + 4 is not (c + 1)S2 → S3 ∧ S1 if k = 1 or
(c + 1)S2 → S3 if k > 1, and one of steps 4c + 7 or 4c + 8 is not either, then the players not
on team m can do the following after step 4c + 8 described above.

Step 4c + 9: (c + 1)S1 → S2.

Step 4c + 10: (c + 1)S1 → S2.

Step 4c + 11:

{
(c + 1)S2 → S3 ∧ S1 if k = 1,

(c + 1)S2 → S3 if k > 1.

Step 4c + 12:

{
(c + 1)S2 → S3 ∧ S1 if k = 1,

(c + 1)S2 → S3 if k > 1.

(4.8)

Note that steps 2c+3 and 2c+4 take away at most three of S2, and steps 4c+7 and 4c+8 also
take away at most three of S2. Also, note that steps 1 through 2c+3 and 2c+5 through 4c+6
generate eight of S2 in total, so there will be at least two S2’s remaining. Therefore for steps
4c + 9 and 4c + 10,instead of doing (c + 1)S1 → S2 the players can instead do cS1 ∧ cS2 → S3

if k = 1, or (c + 1)S1 ∧ cS2 → S3 if k > 1. Since team m has the winning strategy, suppose
Player a on team m would have made the last move. However, after this sequence of moves
Player a − 2 on team m − 1 will make the last move, which is a contradiction. This proves
Lemma 4.6. �

By Lemmas 4.5 and 4.6, Theorem 1.9 is proved. �

Theorem 1.10. Let p ≥ 6 and c = 1. If there are two teams, one with p− 2 players and
the other with two players, then the larger team has a winning strategy for n ≥ 36 in the Team
Generalized Zeckendorf Game.

Proof. We prove this result independently in several different cases based on the arrangement
of the players.

Case 1: Suppose p = 6, and the 4-player team consists of 4 consecutive players, then the
2-player alliance will have 2 consecutive players. If we consider the 4-player team as two teams
each with two consecutive players, then by Lemma 4.6 the 2-player alliance does not have a
winning strategy. Since there are only two teams this is analogous to the regular 2-player
game where one team must have a winning strategy, so the 4-player team must have a winning
strategy.

Case 2: Suppose again that p = 6, but the 4-player team is separated in two parts, each
with two consecutive players. Note that the sequence of all six players is equivalent to two
rounds of a 3-player game in which two of the players are on the same team. According to
Lemma 4.3 the single player does not have a winning strategy in this case, so once again the
4-player team has a winning strategy.

Case 3: Suppose the larger team is separated in two parts, where one part has at least
three consecutive players. Note that this will always be the case for p ≥ 7 by the pigeonhole
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principle. Suppose for contradiction that the smaller team has a winning strategy, then there
exists a Player q from the smaller team who makes the last move. Let the three consecutive
players on the larger team be a, a + 1, and a + 2. They can do the following moves to steal
the winning strategy.

Player a: (2)S1 → S2.

Player a + 1: (2)S1 → S2.

Player a + 2:

{
(2)S2 → S3 ∧ S1 if k = 1,

(2)S2 → S3 if k > 1.

(4.9)

Note that if Player a + 1 instead does S1 ∧ S2 → S3 if k = 1, or 2S1 ∧ S2 → S3 if k > 1, the
Player q−1 will now make the last move. Since the players on the smaller team are separated,
Player q − 1 belongs to the larger team, which is a contradiction. Thus, the larger team has
a winning strategy.

Case 4: Suppose p = 7 and the players on the larger team are all consecutive, and for con-
tradiction assume the smaller team has a winning strategy. Let the first of the five consecutive
players be Player a, then the larger team can do the following.

Step 1: Player a: (2)S1 → S2.

...

Step 5: Player a + 4: (2)S1 → S2.

Step 6: Player a + 5: Anything since this player is on the smaller team.

Step 7: Player a + 6: Anything since this player is on the smaller team.

Step 8: Player a: (2)S1 → S2.

Step 9: Player a + 1: (2)S1 → S2.

Step 10: Player a + 2: (2)S1 → S2.

Step 11: Player a + 3:

{
(2)S2 → S3 ∧ S1 if k = 1,

(2)S2 → S3 if k > 1.

Step 12: Player a + 4:

{
(2)S2 → S3 ∧ S1 if k = 1,

(2)S2 → S3 if k > 1.

(4.10)

Note that steps 6 and 7 can take away at most four of S2 in total, and steps 1, 2, 3, 4, 5, and
8 generate six of S2 in total. Therefore, after step 8 there will be at least two of S2 remaining.
Let q be the player from the smaller team who makes the final move. Then Players a+ 1 and
a + 2 in steps 9 and 10 can instead do S1 ∧ S2 → S3 if k = 1, or 2S1 ∧ S2 → S3 if k > 1.
Then Player q − 2 on the larger team becomes the player to take the last move, which is a
contradiction so the larger team has a winning strategy.

Case 5: Suppose p ≥ 8 and the players on the larger team are all consecutive, and for
contradiction assume the smaller team has a winning strategy, with Player q on the smaller
team making the final move. Let the first of the consecutive players be Player a, then the
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larger team can do the following.

Step 1: Player a: (2)S1 → S2.

...

Step 4: Player a + 3: (2)S1 → S2.

Step 5: Player a + 4:

{
(2)S2 → S3 ∧ S1 if k = 1,

(2)S2 → S3 if k > 1.

Step 6: Player a + 5:

{
(2)S2 → S3 ∧ S1 if k = 1,

(2)S2 → S3 if k > 1.

(4.11)

Note that Players a through a + 5 are all on the large alliance, and that Players a + 2 and
a + 3 can instead do S1 ∧ S2 → S3 if k = 1, or 2S1 ∧ S2 → S3 if k > 1. Then Player q − 2
on the larger team becomes the player to take the last move, which is a contradiction so the
larger team has a winning strategy.

These five cases prove Theorem 1.10. �

5. Future Work

Although we have proved some significant results on winning strategies of Generalized (c,k)-
nacci game, there are still many interesting questions worth exploring. First of all, we have
not proved which player has a winning strategy for all types of Generalized Zeckendorf Games,
but rather only for some of them. It would be very interesting if we could extend our results
and techniques for finding winning strategies to other generalized sequences described by
linear recurrence relations. For instance, if we extend the game to work on more generalized
sequences, would the stealing strategy technique still apply? We could also further discuss
which player has a winning strategy in the two-player version of the game, and whether a
player or an alliance has a winning strategy in the multiplayer or multialliance games of more
generalized linear recurrence relations.

Additionally, we could try to improve our lower bound for the two-player Generalized (c, k)-
nacci Zeckendorf Game, and prove which player has a winning strategy when n is smaller than
(c + 1)3 + c + 1. We have found improved bounds for specific cases such as the Zeckendorf
Game on the Fibonacci numbers and the Tribonacci Game, so we would like to find a general
pattern for the lower bound where Theorem 1.6 holds. Similarly, we can improve our lower
bounds on n related to the multiplayer and multialliance Generalized (c, k)-nacci Zeckendorf
Game.

Appendix A. Proof of Lemma 3.1 When d is Even

Now we consider the case when d is even, and we suppose for contradiction that Player
2 has a winning strategy. Note that from row 1 to row c, each node only has one child,
so Player 2 has a winning strategy for all these c rows. Row c is Player 1’s turn since c is
odd, so both nodes in row c + 1 have a winning strategy for Player 2. We can follow this
pattern following the same moves as when c is even until row c2. The only slight difference
is on turns kc where k is even, since turn kc is Player 2’s turn and Player 2 also has the
winning strategy. In this case at least one of the children in row kc + 1 must have a winning
strategy for Player 2. Since both nodes in row kc + 1 have children back on the main part
of the tree, the node in row kc + 2 must have a winning strategy for Player 2. The node

{1(n−c3+2c−1) ∧ c(c−1) ∧ (cc− 1)(c−1)} in row c2 is Player 1’s turn, so all of its children in row
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c2 + 1 also have a winning strategy for Player 2. Since {1(n−c3+2c−1) ∧ ccc − 2c + 1} in row

c2 + 1 has only one child, {1(n−c3+2c−1) ∧ c ∧ ccc − 2c + 1} in row c2 + 2 must also have a
winning strategy for Player 2. Then Player 1 must have a winning strategy for the equivalent

node in row C2 +3. However, since Player 2 has a winning strategy for {1(n−c3−c)∧ (cc−1)(c)}
in row c2 + 1, at least one of its children must also have a winning strategy for Player 2. Both

children are parents to the node {1(n−c3+c−1) ∧ c ∧ ccc− 2c + 1} in row c2 + 3, and since row

c2 + 2 is Player 1’s turn, {1(n−c3+c−1)∧ c∧ ccc−2c+ 1} in row c2 + 3 must also have a winning
strategy for Player 2. This is a contradiction, so Player 2 must have a winning strategy.

Appendix B. Proof of Lemma 3.3

Let d = c−1. Note that Lemma 3.3 is equivalent to the following statement: for (d, k)-nacci
Game, for any c ≥ 2, k ≥ 3, and n ≥ c3 + c, when d is odd, Player 2 always has a winning
strategy; when d is even, Player 1 always has a winning strategy.

First, we prove that for the (d, k)-nacci Game, for any c ≥ 2, k ≥ 3, and n ≥ c3 + c, when
d is odd, Player 2 always has a winning strategy.

Suppose for contradiction that Player 1 has a winning strategy. Note that from row 1 to
row c, each node only has 1 child, so Player 1 has a winning strategy for all these c rows. In
row c Player 1 has a winning strategy for {1n−(c−1)c ∧ cc−1}, and since it is Player 2’s turn,

Player 1 has a winning strategy for all of its children, including {1n−c2∧cc} and {1n−c2∧cc} in

row c+1. Since {1n−c2 ∧cc} in row c+1 has only one child, for its only child {1n−c2−c∧c∧cc}
in row c+2, Player 1 has a winning strategy. We call the process from row 1 to row c as round
1, which contains c rows in total.

Starting from the node {1n−c2 ∧ cc} in row c+ 1, we repeat the same procedure as in round
1. We repeat this procedure c times until row c2.

As Player 1 has a winning strategy for {1n−c(c−1)−c2(c−1) ∧ cc−1 ∧ ccc−1} in row c2, and it
is Player 2’s turn in row c2, then Player 1 has a winning strategy for all its children, which

includes the 3 nodes in row c2 + 1 as shown in the diagram. Note that {1n−c3 ∧ ccc} in row

c2 + 1 has one child, so Player 1 has a winning strategy for {1n−c3−c ∧ c ∧ ccc} in row c2 + 2.

Since it is equivalent to {1n−c3−c ∧ c ∧ ccc} in row c2 + 2, Player 2 has a winning strategy for

{1n−c3−c ∧ c ∧ ccc} in row c2 + 3.

On the other hand, since Player 1 has a winning strategy for {1n−c3 ∧ ccc} in row c2 + 1,

Player 1 has a winning strategy for at least one of its children, which is either {1n−c3−c∧c∧ccc}
or {1n−c3 ∧ ccc} in row c2 + 2. Since {1n−c3−c ∧ c∧ ccc} in row c2 + 3 is a child of both nodes,
and it is Player 2’s turn in row c2 + 2, it follows that Player 1 has a winning strategy for

{1n−c3−c ∧ c∧ ccc} in row c2 + 3. This is a contradiction, so we have proved that Player 2 has
a winning strategy when d is odd.

Next, we prove that for the (d, k)-nacci Game, for any c ≥ 2, k ≥ 3, and n ≥ c3 + c, when
d is even, Player 1 always has a winning strategy.

We suppose for contradiction that Player 2 has a winning strategy. Note that from row 1
to row c, each node has only 1 child, so Player 2 has a winning strategy for all these c rows.
In row c Player 2 has a winning strategy for {1n−(c−1)c ∧ cc−1}, and since it is Player 1’s turn,

Player 2 has a winning strategy for all its children, including {1n−c2 ∧ cc} and {1n−c2 ∧ cc} in

row c + 1. Since {1n−c2 ∧ cc} has only 1 child, we can follow a similar process to that of the

first c rows from {1n−c2 ∧ cc} in row c+ 1 until {1n−c2−(c−1)c∧ cc−1∧ cc} in row 2c. Since each
node has only one child, Player 2 has a winning strategy for all these c nodes.
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Since Player 2 has a winning strategy for {1n−c2−(c−1)c ∧ cc−1 ∧ cc} in row 2c, Player 2

has a winning strategy for at least one of its children, which is either {1n−2c2 ∧ cc ∧ cc} or

{1n−2c2∧cc2} in row 2c+1. Note that {1n−2c2−c∧c∧cc2} in row 2c+2 is a child of both nodes,

and it is Player 1’s turn in row 2c+1, so Player 2 has a winning strategy for {1n−2c2−c∧c∧cc2}
in row 2c + 2.

We call the process from row 1 to row c as round 1, the process from row c+ 1 to row 2c as
round 2, and so on, where each round contains c consecutive rows. We can repeat the same
process for c rounds until row c2. Also, note that from row 2tc to row 2tc + 2 (where t is a
positive integer and 1 ≤ t ≤ d/2), the proof is the same as the proof from row 2c to row 2c+2.

As Player 2 has a winning strategy for {1n−c(c−1)−c2(c−1) ∧ cc−1 ∧ ccc−1} in row c2, and it
is Player 1’s turn in row c2, then Player 2 has a winning strategy for all its children, which

includes the 3 nodes in row c2 + 1 as shown in the diagram. Note that {1n−c3 ∧ ccc} in row

c2 + 1 has one child, so Player 2 has a winning strategy for {1n−c3−c ∧ c ∧ ccc} in row c2 + 2.

Since it is equivalent to {1n−c3−c ∧ c ∧ ccc} in row c2 + 2, Player 1 has a winning strategy for

{1n−c3−c ∧ c ∧ ccc} in row c2 + 3.

On the other hand, since Player 2 has a winning strategy for {1n−c3 ∧ ccc} in row c2 + 1,

Player 2 has a winning strategy for at least one of its children, which is either {1n−c3−c∧c∧ccc}
or {1n−c3 ∧ ccc} in row c2 + 2. Since {1n−c3−c ∧ c∧ ccc} in row c2 + 3 is a child of both nodes,
and it is Player 1’s turn in row c2 + 2, it follows that Player 2 has a winning strategy for

{1n−c3−c ∧ c∧ ccc} in row c2 + 3. This is a contradiction, so we have proved that Player 1 has
a winning strategy when d is even, which completes the proof.

Appendix C. Tree for Lemma 3.1 When d is Even

player turn

1 1 1n

2 2 1(n−c) ∧ c

2 c 1(n−c2+c) ∧ c(c−1)

1 c + 1 1(n−c2) ∧ c(c) 1(n−c2+1) ∧ cc− 1

2 c + 2 1(n−c2−c+1) ∧ c ∧ cc− 1

2 2c 1(n−2c2+c+1) ∧ c(c−1) ∧ cc− 1

1 2c + 1 1(n−2c2+1) ∧ c(c) ∧ cc− 1 1(n−2c2+2) ∧ (cc− 1)(2)

2 2c + 2 1(n−2c2−c+2) ∧ c ∧ (cc− 1)(2)

2 c2 1(n−c3+2c−1) ∧ c(c−1) ∧ (cc− 1)(c−1)

1 c2 + 1 1(n−c3+c−1) ∧ c(c) ∧ (cc− 1)(c−1) 1(n−c3−c) ∧ (cc− 1)(c) 1(n−c3+2c−1) ∧ ccc− 2c + 1

2 c2 + 2 1(n−c3) ∧ c ∧ (cc− 1)(c) 1(n−c3+2c−1) ∧ ccc− 2c + 1 1(n−c3+c−1) ∧ c ∧ ccc− 2c + 1

1 c2 + 3 1(n−c3+c−1) ∧ c ∧ ccc− 2c + 1

Figure 6. (d, 1)-nacci tree depicting the proof of Theorem 3.1, where d = c−1
is odd. Red indicates a winning strategy for Player 1, and blue indicates a
winning strategy for Player 2. Green indicates a winning strategy for both
players, which is a contradiction.
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Appendix D. Tree for Lemma 3.2 When d is Even

player turn

1 1 1n

2 2 1(n−c) ∧ c

2 c 1(n−c2+c) ∧ c(c−1)

1 c + 1 1(n−c2) ∧ c(c) 1(n−c2) ∧ cc

2 c + 2 1(n−c2−c) ∧ c ∧ cc

2 2c 1(n−2c2+c) ∧ c(c−1) ∧ cc

1 2c + 1 1(n−2c2) ∧ c(c) ∧ cc 1(n−2c2) ∧ cc(2)

2 2c + 2 1(n−2c2−c) ∧ c ∧ cc(2)

2 c2 1(n−c3+c) ∧ c(c−1) ∧ cc(c−1)

1 c2 + 1 1(n−c3) ∧ c(c) ∧ cc(c−1) 1(n−c3) ∧ cc(c) 1(n−c3+1) ∧ ccc− 1

2 c2 + 2 1(n−c3−c) ∧ c ∧ cc(c) 1(n−c3+1) ∧ ccc− 1 1(n−c3−c+1) ∧ c ∧ ccc− 1

1 c2 + 3 1(n−c3−c+1) ∧ c ∧ ccc− 1

Figure 7. (d, 2)-nacci tree depicting the proof of Theorem 3.2, where d = c−1
is even. Red indicates a winning strategy for Player 1, and blue indicates a
winning strategy for Player 2. Green indicates a winning strategy for both
players, which is a contradiction.
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Appendix E. Tree for Lemma 3.3 When d is Even

player turn

1 1 1n

2 2 1(n−c)

2 c 1(n−c2+c) ∧ c(c−1)

1 c + 1 1(n−c2) ∧ c(c) 1(n−c2) ∧ cc

2 c + 2 1(n−c2−c) ∧ c ∧ cc

2 2c 1(n−2c2+c) ∧ c(c−1) ∧ cc

1 2c + 1 1(n−2c2) ∧ c(c) ∧ cc 1(n−2c2) ∧ cc(2)

2 2c + 2 1(n−2c2−c) ∧ c ∧ cc(2)

2 c2 1(n−c3+c) ∧ c(c−1) ∧ cc(c−1)

1 c2 + 1 1(n−c3) ∧ c(c) ∧ cc(c−1) 1(n−c3) ∧ cc(c) 1(n−c3) ∧ ccc

2 c2 + 2 1(n−c3−c) ∧ c ∧ cc(c) 1(n−c3) ∧ ccc 1(n−c3−c) ∧ c ∧ ccc

1 c2 + 3 1(n−c3−c) ∧ c ∧ ccc

Figure 8. (d, k)-nacci tree depicting the proof of Theorem 3.3, where d = c−1
is even and k ≥ 3. Red indicates a winning strategy for Player 1, and blue
indicates a winning strategy for Player 2. Green indicates a winning strategy
for both players, which is a contradiction.
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