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Abstract. An interesting open problem in number theory asks whether it is possible to walk
to infinity on primes, where each term in the sequence has one more digit than the previous.
In this paper, we study its variation where we walk on the Fibonacci sequence. We prove that
all walks starting with a Fibonacci number and the following terms are Fibonacci numbers
obtained by appending exactly one digit at a time to the right have a length of at most two.
In the more general case where we append at most a bounded number of digits each time, we
give a formula for the length of the longest walk.

1. Introduction

In our previous study [5], we examined an open problem that asks if it is possible to construct
an infinite sequence, or as we call it, a walk to infinity, on primes where each term, or step, has
one more digit than the previous. If we start from a single-digit prime, this problem is the same
as finding a right truncatable prime, which is a prime that remains prime after removing the
rightmost digits successively. It is known that the largest right truncatable prime is 73939133
[1], so one cannot walk to infinity starting with a one-digit prime, i.e., the longest such walk is

{7, 73, 739, 7393, 73939, 739391, 7393913, 73939133}.
However, the problem remains open if we allow ourselves to start with a prime of any digits.

We [5] showed that it is impossible to construct such a walk on primes in bases 2, 3, 4, 5, and 6.
For primes in base 10, although we could not solve the problem, we gave stochastic models to
determine the expected value of the length of such walks. We further studied the same question
for other number-theoretical sequences, namely, perfect squares and square-frees. Moreover,
motivated by the Gaussian moat problem [2], which asks whether one can walk to infinity on
primes in the quadratic integer ring Z[i] with a bounded step size, we investigated walks on
primes in Z[

√
2] and gave a conditional proof that such walks do not exist [4].

In this paper, we shift our attention to the well-known Fibonacci sequence and, again, ask
whether one can walk to infinity on the Fibonacci sequence by appending one digit to the right
each time. The definition of the Fibonacci sequence [6] can be given as follows:

Definition 1.1 (Fibonacci numbers). Let Fn be the n-th Fibonacci number and F0 = 0, F1 = 1.
For n ≥ 2,

Fn = Fn−1 + Fn−2.

Using the above recurrence relation, one can approximate the ratio of any consecutive
Fibonacci numbers: let limn→∞ Fn/Fn−1 = x. Dividing the recurrence relation by Fn−1 and
taking n to infinity gives

lim
n→∞

Fn

Fn−1
= 1 + lim

n→∞

Fn−2
Fn−1

,

which implies x = 1 + 1/x hence x ≈ 1.618 . . ., i.e., the golden ratio. In other words, the
Fibonacci numbers grow exponentially while the growth of primes is linear times logarithm,
i.e., the n-th prime is asymptotic to n log n resulting from the prime number theorem. Unlike
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in the case of primes, this significantly more rapid growth of the Fibonacci numbers allows us
to resolve the problem, and the result can be stated as follows:

Theorem 1.2. It is impossible to construct an infinite walk on the Fibonacci sequence by
appending exactly one digit at a time to the right. In particular, all such walks have a length
of at most 2.

Furthermore, we generalize this problem to appending at most N digit to the right each
time and obtain the following theorem.

Theorem 1.3. Given we append at most N digits to the right each time and the starting
number contains N0 ≥ 2 digits, the length of the longest walk is then at most blog2

N
N0−1c+ 2.

If N0 = 1, the length of the longest walk is at most blog2Nc+ 2.

2. Proof of the Theorems 1.2 and 1.3

To prove our theorems, we first establish some relations between any two Fibonacci numbers
with k order apart, i.e., Fm and Fm+k.

Lemma 2.1. For all m, k ∈ N,

Fk+1Fm ≤ Fm+k ≤ Fk+2Fm.

Proof. Let m be any positive integer. We show that the statement is true for all k ∈ N by
strong induction. For the base cases k = 1 and k = 2, by the recurrence relation in Definition
1.1 and the fact that the Fibonacci sequence is increasing, Fm ≤ Fm+1 ≤ 2Fm holds. Moreover,
it follows that 2Fm ≤ Fm+2 ≤ 3Fm by adding Fm throughout the prior inequality.

Now, suppose that for all k with 2 ≤ k ≤ r, Fk+1Fm ≤ Fm+k ≤ FkFm. Taking k = r − 1
and r gives us

FrFm ≤ Fm+r−1 ≤ Fr+1Fm

and

Fr+1Fm ≤ Fm+r ≤ Fr+2Fm

respectively. Thus, combining the above two inequalities yields

Fr−1Fm + FrFm ≤ Fm+r−1 + Fm+r ≤ FrFm + Fr+1Fm.

Again, by the recurrence relation, the above inequality is equivalent to the lemma statement.
�

Lemma 2.2. For all m ≥ k ∈ N, k ≥ 2,

Fm+k = (Fk+2 − Fk−2)Fm + (−1)k+1Fm−k.

Proof. Let ϕ = (1 +
√

5)/2, the golden ratio. Using the supposition, we compute that

ϕ4 − 1 =
√

5ϕ2. (2.1)

Furthermore, Binet’s formula gives

Fn =
ϕn − (−ϕ)−n√

5
, (2.2)
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and hence

(Fk+2 − Fk−2)Fm + (−1)k+1Fm−k

=
(ϕk+2 − (−ϕ)−k−2)− (ϕk−2 − (−ϕ)−k+2)√

5
· (ϕm − (−ϕ)−m)√

5
+ (−1)k+1 (ϕm−k − (−ϕ)k−m)√

5

=
(ϕ4 − 1)(ϕk−2 + (−ϕ)−k−2)√

5
· (ϕm − (−ϕ)−m)√

5
+ (−1)k+1 (ϕm−k − (−ϕ)k−m)√

5
.

Thus, by (2.1), we substitute ϕ4 − 1 by
√

5ϕ2 in the above expression and obtain

ϕ2(ϕk−2 + (−ϕ)−k−2)(ϕm − (−ϕ)−m)√
5

+ (−1)k+1 (ϕm−k − (−ϕ)k−m)√
5

=
ϕm+k − (−ϕ)−m−k + ϕm−k(−1)−k − ϕk−m(−1)−m√

5
− (−1)kϕm−k − (−1)mϕk−m

√
5

=
ϕm+k − (−ϕ)−m−k√

5
,

which is exactly Fm+k by (2.2). �

Now that we have Lemmas 2.1 and 2.2, we obtain our first theorem where we append exactly
one digit at a time to the right.

Proof of Theorem 1.2. Starting with some Fibonacci number Fm ≥ 1, if we append d ∈
{0, 1, 2, . . . , 9}, the newly appended number is then 10Fm + d. From Lemmas 2.1 and 2.2
respectively, the following statements hold.

5Fm ≤ Fm+4 ≤ 8Fm ≤ Fm+5 ≤ 13Fm ≤ Fm+6 ≤ 21Fm, (2.3)

and

For all, m > 5 ∈ N, Fm+5 = 11Fm + Fm−5. (2.4)

Since 10Fm + d is a Fibonacci number and 8Fm + d ≤ 10Fm + d ≤ 13Fm + d, (2.3) implies
that 10Fm + d is either Fm+5, or Fm+6 if m is small.

• If 10Fm + d = Fm+6, we have that 10Fm + d ≥ 13Fm and, thus, d ≥ 3Fm. Since d is a
single-digit number, the possible values of Fm are 1, 2 and 3.
• If 10Fm + d = Fm+5, (2.4) tells us that if m > 5, 10Fm + d = 11Fm + Fm−5, so
d = Fm + Fm−5. Again, since 0 ≤ d ≤ 9, Fm ≤ 9, and, as m > 5, the only possible
value is Fm = 8. Otherwise when m ≤ 5, Fm is either 1, 2, 3, 5 of 8.

From both cases, we conclude that any walks must start from Fm = 1, 2, 3, 5, or 8. This fact
implies that there are only 5 possible walks of length 2, namely, 1 → 13, 2 → 21, 3 → 34,
5→ 55, and 8→ 89. �

Now, we apply the same technique to the case where we appended exactly N digits at a time
to the right. By appending exactly N digits, we also include appending 0’s leading numbers,
for example, 001 or 0000002123. This is an intermediate step towards Theorem 1.3 where we
append at most N digits each time. We first start from the following lemma.

Lemma 2.3. For all natural numbers N , there exists no natural number k ≥ 2 such that

Fk+2 − Fk−2 = 10N .
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Proof. By observing the first 100 Fibonacci numbers [3, Appendix 2, p. 585–588], we notice
that F61 ≡ F1 (mod 10) and F62 ≡ F2 (mod 10). We show inductively that for any positive
integer n, F60+n ≡ Fn (mod 10). The case when n = 1 or n = 2 is established. As for the
inductive step, if F60+k ≡ Fk (mod 10) and F60+(k+1) ≡ Fk+1 (mod 10), then we have

F60+(k+2) = F60+k + F60+(k+1) ≡ Fk + Fk+1 = Fk+2 (mod 10).

The periodic property F60+n ≡ Fn (mod 10) tells us that if there exists no pair of Fibonacci
numbers Fk+2 and Fk−2, where 2 ≤ k ≤ 62, such that Fk+2 − Fk−2 ≡ 0 (mod 10), then
there is no k such that Fk+2 − Fk−2 ≡ 0 (mod 10); as a result, it is impossible to have
Fk+2 − Fk−2 = 10N . This is because if there is no such a pair when 2 ≤ k ≤ 62, neither does
when 2+60m ≤ k ≤ 62+60m, where m ∈ N. Hence there are no possible pairs for any integer
k > 2.

Going through the list of Fibonacci numbers again, we find no such pair in the first 62
Fibonacci numbers, which completes our proof. �

Lemma 2.3 then serves as an important tool to draw some conclusions in the next Lemma.

Lemma 2.4. It is impossible to construct an infinite walk on the Fibonacci sequence by ap-
pending exactly N digits at a time, where N is a fixed positive integer. In particular, any
appendable step in the walk must be of length at most 8/7 · (10N − 1).

(Note that, in this case, an appendable step refers to a step in a walk that we can append
some N -digit number to the right and still get a Fibonacci. When a step is not appendable,
the walk terminates.)

Proof. Let N be a fixed positive integer and Fm be the starting number of a walk. Similar to
Theorem 1.2 the next step in the walk can be written as

10NFm + d, where 0 ≤ d ≤ 10N − 1.

Now, let k be such that Fk+1 ≤ 10N and Fk+2 > 10N . By Lemma 2.1, we have that

Fk+1Fm ≤ Fm+k ≤ Fk+2Fm. (2.5)

Again, while the most likely case is when 10NFm + d = Fm+k, there are two unlikely cases:
10NFm + d < Fk+1Fm and 10NFm + d > Fk+2Fm.

If 10NFm + d < Fk+1Fm, then (2.5) fails because Fk+1 ≤ 10N and d is positive.
Now consider the case when 10NFm + d > Fk+2Fm. Since Fk+2 > 10N and hence Fk+2 ≥

10N + 1, we have that

10NFm + d > (10N + 1)Fm,

meaning that any appendable Fm in the walk must be ≤ d ≤ 10N − 1.
Lastly, for the most likely case when 10NFm + d = Fm+k, from Lemma 2.2, we have

10NFm + d = (Fk+2 − Fk−2)Fm + (−1)k+1Fm−k

d = (Fk+2 − Fk−2 − 10N )Fm + (−1)k+1Fm−k

10N − 1 ≥ (Fk+2 − Fk−2 − 10N )Fm + (−1)k+1Fm−k ≥ 0. (2.6)

Thus, Fk+2 − Fk−2 ≥ 10N ; otherwise, (2.6) would not hold.
If Fk+2 − Fk−2 ≥ 10N + 2, by (2.6), we obtain that

10N − 1 ≥ 2Fm + (−1)k+1Fm−k ≥ Fm.

Hence, any appendable Fm in the walk must be ≤ 10N − 1.
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Now, we remain to examine the cases when Fk+2 − Fk−2 is either exactly 10N or 10N + 1.
If Fk+2 − Fk−2 = 10N , from Lemma 2.3, we know that this case is not possible. Otherwise, if
Fk+2 − Fk−2 = 10N + 1, from (2.6) and 0 ≤ d ≤ 10N − 1, we have

10N − 1 ≥ Fm + (−1)k+1Fm−k ≥ 0.

If k is odd, Fm has to be ≤ 10N − 1 just like the result we have had so far. However, if k is
even, we have 10N − 1 ≥ Fm − Fm−k ≥ 0. Therefore,

Fm ≤ 10N − 1 + Fm−k, (2.7)

so if we can approximate an upper bound of Fm−k in terms of Fm, we can find a bound for
Fm. By our supposition Fk+2 − Fk−2 = 10N + 1, we have k ≥ 5 because when N = 1, k = 5.
Then, Fm−k ≤ Fm−5 ≤ Fm/8 by using the bounding technique in Lemma 2.1. Therefore, we
have that, Fm−k ≤ Fm/8, so, by (2.7),

10N − 1 ≥ 7Fm/8 or Fm ≤ 8/7 · (10N − 1).

Thus, since the bound 8/7·(10N−1) is greater than 10N−1, we conclude that any appendable
step in the walk must be less than 8/7 · (10N − 1). This implies that any walk on Fibonacci
must terminate as soon as the number is greater 8/7 · (10N − 1) given we append exactly N
digits each time. �

Corollary 2.5. The implication of Lemma 2.4 is that any appendable step in a walk must
contain at most blog(8/7 · (10N − 1)) + 1c = b0.058 + N + 1c = N + 1 digits, given we append
exactly N digits each time. Since any number not greater than 8/7 · (10N − 1) will contain at
least N + 1 digits after appended by N digits one time, we can append at most twice.

Corollary 2.6. For any natural number M ≤ N , Corollary 2.5 says that we cannot append
M digits to the right when starting with a number of N +2 ≥M +2 digits because the starting
point already has too many digits. In other words, if a Fibonacci number has at least N + 2
digits, we cannot append 1, 2, . . . , or N digits to the right of that number to obtain another
Fibonacci number.

Proof of Theorem 1.3. Given that we start with a Fibonacci number A0 that has N0 digits.
Corollary 2.6 then implies that we cannot append 1, . . . , N0 − 2 digits to A0. Thus, we can
only append N0 − 1 digits or above in the first appending. Then, after the first appending,
the newly appended number, A1, now contains at least N0 + N0 − 1 = 2N0 − 1 digits. Again,
Corollary 2.6 implies that we can only append 2N0−2 or above number of digits in the second
appending. Repeating the process above, we are required to append at least 2M−1(N0 − 1)
digits at the M -th step. Hence, we can determine the largest M as follows:

2M−1(N0 − 1) ≤ N

M ≤ log2
N

N0 − 1
+ 1.

Therefore, the length of the longest walk is at most blog2
N

N0−1c + 2, including the starting
number. Notice that this formula does not work for N0 = 1 since we do not want to append
N0 − 1 = 0 digit. However, by similar analysis, we obtain that blog2Nc + 2 is the length of
the longest walk starting with a single-digit number. �

By exploiting several relationships among Fibonacci numbers, we conclude that there is no
walk to infinity on the Fibonacci sequence, given we append at most N digits at a time to the
right. In addition, the length blog2

N
N0−1c + 2 in Theorem 1.3 suggests us that the length of

any walk on Fibonacci is relatively small compared to N , a fixed positive integer.
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