
SOME GENERALIZATIONS OF A FORMULA OF REZNICK

SAM NORTHSHIELD

Abstract. In 2008, Reznick published a formula for the statistical behavior of Stern’s se-
quence modulo m. We reprove this result and, using it, prove similar results for other se-
quences.

1. Introduction

For a given integer sequence (xn), we define its distribution modulo m as the numbers

P (a,m) := lim
N→∞

1

N
|{n ≤ N : xn ≡ a mod m}| . (1.1)

These limits, of course, do not necessarily exist in which case we say that (xn) has no distri-
bution modulo m. A good reference for this topic is the last chapter of [9]. It is easy to see
that in the special case where (xn) is periodic these numbers do exist (for all m). For example,
for a fixed m, (Fn, Fn+1) mod m has only finitely many possible values and so is eventually
periodic for all m (in fact periodic since the map (a, b) 7→ (b, a + b) is invertible). More is
known about the distribution of the Fibonacci sequence: Niederreiter [12] has shown that if
m is a power of 5 then the distribution is uniform (i.e., P (a,m) = P (b,m) for all a, b) modulo
m; Kuipers and Shiu [10] have shown the converse.

For non-periodic sequences, other techniques must be used. In 2006, Reznick [18] showed
that Stern’s sequence, defined by a1 = 1, a2n = an, a2n+1 = an + an+1, has distribution

P (a,m) =
1

m

∏
p|m

p2

p2 − 1

∏
p|(a,m)

p− 1

p
. (1.2)

We shall give a new proof of this fact [Theorem 3.5] using Markov chains. This technique was
mentioned, but not used, in [18].

A consequence of (1.2) is

P (i,mk) =
P (i,m)

mk−1
. (1.3)

From this we prove that, for all m,
⌊
an
m

⌋
is uniformly distributed modulo mk for all k [Corollary

3.6].
In [15], an analogue (bn) of Stern’s sequence, using x ⊕ y = x + y +

√
1 + 4xy instead of

x+ y in its definition, was introduced:

b1 = 0, b2n = bn, b2n+1 = bn ⊕ bn+1 = bn + bn+1 +
√

1 + 4bnbn+1.

Using the identity (Theorem 3.6 of [15])

bk = a2j+1−k · ak−2j , (2
j ≤ k ≤ 2j+1), (1.4)
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it follows that (bn) has distribution

P (i,m) =
1

m

∏
p|m

p

p+ 1

∏
p|(i,m)

2 =
2ω((i,m))

ψ(m)
(1.5)

where ω(m) is the number of distinct prime divisors of m and ψ(m) is Dedekind’s psi-function

[Theorem 4.2]. For this sequence, (1.3) holds and thus
⌊
bn
m

⌋
is uniformly distributed modulo

mk for all k [Corollary 4.3].
It is easy to see that

P (i,m) =
1

m

∏
p|(i,m)

f(p)

p−1
·
∏
p|m

p-(i,m)

1− f(p)

1− p−1
(1.6)

where f(p) =
1

p+ 1
and f(p) =

2

p+ 1
for the distributions of (an) and (bn) respectively. The

arguments for Corollaries 3.6 and 4.3 carry over to any sequence with distribution of the form
(1.6). Two questions come to mind: What sequences have distribution of the form (1.6)?
What functions f(p) are “represented” by a sequence with distribution (1.6)?

By equation (1.4), it turns out that the values of (bn) are those attained by the quadratic
form Q(x, y) = xy over all the pairs of relatively prime non-negative integers x, y. This points
to our next result: for a primitive integral quadratic form Q(x, y) with discriminant ∆, when
gcd(m,∆) = 1, the sequence (Q(an, an+1)) has distribution of the form (1.6) where

f(p) =
1 +

(
∆
p

)
p+ 1

(1.7)

(here (∆/p) is the usual Legendre symbol when p is odd, and is specially defined when p = 2)
[Theorem 5.4]. Hence xn := Q(an, an+1) satisfies, for all m relatively prime to ∆, bxn/mc is
uniform mod mk for all k [Corollary 5.5].

Lastly, we consider the sequence (Rn) where Rn is the number of ways to represent n as a
sum of distinct Fibonacci numbers. This sequence, though similar to Stern’s sequence, does
not share a distribution of form (1.6). In this case, we show that P (0,m) = 1 for all m
[Theorem 6.3].

I thank my colleague Naveen Somasunderam for suggesting the problem “What is the dis-
tribution of an mod m?”, and Keith Conrad for answering, on MathOverflow, two questions
that helped complete a proof of Theorem 5.4.

2. Preliminaries

To show the limits

P (a,m) := lim
N→∞

1

N
|{n ≤ N : xn ≡ a mod m}| (2.1)

exist, we rely on the following lemma. Suppose ck ∈ {0, 1} for all k and define, for m < n,

A(m,n) :=
1

n−m

n∑
k=m+1

ck. (2.2)

Lemma 2.1. If L is a number such that for all ε > 0 there exists some j such that A(2jk, 2j(k+
1)) is within ε of L for any k, then limN→∞A(0, N) exists and equals L.
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Proof. For any m,n with m < n, A(2jm, 2jn) is the average of several values of the form
A(2jk, 2j(k + 1)) and so is itself within ε of L. If N = 2jm+ i, 0 < i < 2j , then

A(0, N) =
2jm

2jm+ i
A(0, 2jm) +

i

2jm+ i
A(2jm, 2jm+ i). (2.3)

On the right, the first term is between m
m+1(L− ε) and L+ ε while the second term is between

0 and 1
m . For N large enough, A(0, N) is within 2ε of L. The result follows. �

3. Stern’s sequence modulo m

3.1. Stern’s diatomic array and sequence. Stern’s diatomic array, sometimes thought of
as “Pascal’s triangle with memory”, begins thus:

1 1
1 2 1
1 3 2 3 1
1 4 3 5 2 5 3 4 1
1 5 4 7 3 8 5 7 2 7 5 8 3 7 4 5 1
. . . . . . . . . . . . . . . . .

It is defined recursively: Start with row 1 1. Then, given the nth row, define the next one by
copying the numbers on the nth row but inserting, in each gap, the sum of the two numbers
above.

The numbers in the diatomic array, read like a book (but deleting the right-most column
of 1s), form what is known as Stern’s diatomic sequence which begins (for n = 1, 2, . . .):

an = 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 5, 4, 7, 3, 8, 5, 7, 2, 7, 5, 8, 3, 7, 4, 5, 1, 6, . . . (3.1)

It is defined recursively by

a1 = 1, a2n = an, a2n+1 = an + an+1. (3.2)

See [13] and its references, and sequence A002478 of [16], for information about this excep-
tional, and exceptionally well studied, sequence.

A key result for us is a well-know result (e.g., Theorem 5.1 of [13]).

Proposition 3.1. Every ordered pair of relatively prime positive integers appears exactly once
in the sequence (an, an+1).

3.2. Calkin-Wilf and Stern-Brocot Trees. We introduce a tree that first appeared in
“Recounting the Rationals” [3] by Calkin and Wilf. See also Section 2.2 of [14]. Starting with
1
1 , we repeatedly apply the two maps L : ab 7→

a
a+b and R : ab 7→

a+b
b .

It is easy to see that if rn := an/an+1, then for all n

L : rn 7→ r2n and R : rn 7→ r2n+1. (3.3)

It follows, by Proposition 3.1, that the sequence (rn) is an enumeration of the positive rationals
and that every positive rational appears exactly once on the Calkin-Wilf tree.

We may assign an “address” to each node of a binary rooted tree with a word in {L,R}∗ via
the obvious interpretation. For example, in the CW tree, 5/2 is at location LRR and 1/1 is
at location addressed by the “empty word” ∗. We define a new rooted binary tree: to a node
with address ω, assign the value on the CW tree with address ω′, the reverse of the word ω.
For example, at node RRL, we assign the value 5/2. This gives a new tree which we will call
the Stern-Brocot tree (equivalent to the Stern-Brocot tree defined in [7], which can be easily
checked).
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Figure 1. Calkin-Wilf Tree (or CW Tree).
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Figure 2. Stern-Brocot Tree (or SB Tree).

Conflating an address on the CW tree with the value assigned to it, note that if ω1 < ω2

then ω1L < ω2L and ω1R < ω2R and so, for all ω, ω1ω < ω2ω. Since ω1L < 1 < ω2R for all
ω1, ω2, it follows that, on the SB tree, ωLω1 < ωRω2 for all ω1, ω2, ω. Therefore, the nth row
of the SB tree is a permutation (in fact, involution) of the nth row of the CW tree that orders
those entries in increasing order.

We may define L′ and R′ for the SB tree in terms of Stern’s sequence as follows:

L′ :
am
an
7→ a2m−1

a2n+1
and R′ :

am
an
7→ a2m+1

a2n−1
. (3.4)

The nth row of the SB tree is then
a2k+1

a2n−2k−1
for k = 0, . . . , 2n−1 and therefore the combined

first n rows of the SB tree gives, when written in increasing order, ak
a2n−k

for k = 1, . . . , 2n+1.

Proposition 3.2. The combined first n− 1 rows of the CW tree are the same as for the SB
tree and give, in terms of Stern’s sequence,{

ak
a2n−k

: k = 1, . . . , 2n
}

=

{
ak
ak+1

: k = 1, . . . , 2n
}
. (3.5)

3.3. The CW tree mod m and its Markov chain. To get the “CW tree mod m”, we
replace each fraction a

b in the CW tree with the ordered pair (a mod m, b mod m). Since
the entries of the CW tree include all of the positive rationals (in lowest terms), the CW tree
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mod m has entries in

Sm := {(i, j) ∈ m2 : gcd(i, j,m) = 1}. (3.6)

The cardinality of Sm is thus J2(m), one of the Jordan totient functions. By a known product
formula (see for example Exercise 1.5.2 of [11]), we have

Proposition 3.3. For all m, |Sm| = J2(m) = m2
∏
p|m

(
1− 1

p2

)
.

Consider assigning probability 1
2 to each downward edge of the CW tree mod m. This

creates a Markov chain with state space Sm; here is when m = 3:

Figure 3. Markov chain for S3 (with (a, b) replaced by
(
a
b

)
); from [8].

It turns out that every state is equally likely in the long run, independent of the starting
state. This is true in general.

Lemma 3.4. For every starting state, the distribution of (an, an+1) mod m is uniform on
Sm.

Proof. Fix m. By Proposition 2.1, there is a sequence of steps in the Markov chain that goes
from (1, 1) to any particular (a, b). Note that, modulo m, the map L : (a, b) 7→ (a, a + b) is
invertible (L−1 : (a, b) 7→ (a, b−a)) and its iterates eventually return to (a, b). Hence L−1 = Lk

for some k. The same result holds for R : (a, b) 7→ (a+b, b). Hence, there is a sequence of steps
that takes (a, b) to (1, 1) and then onto any (c, d) of our choosing. Therefore, it is possible to
get from any state to any other state: the Markov chain is irreducible.

Since L((0, b)) = (0, b), the chain is non-periodic. It follows, by the “Fundamental Theorem
of Markov Chains” (see, for example, [2]), that there exists a unique stationary distribution.
Since L and R are invertible, every state has a 2 arrows out and 2 arrows in and so the uniform
distribution is stationary. By uniqueness, it is the unique stationary distribution. That is,
no matter what starting point, as n approaches ∞, the distribution becomes uniform. This
implies that for any node on the CW tree, the distribution modulo m of the 2n descendants
uniformly approaches the uniform distribution. �

Example. For the case when m = 3,

0

1
,
0

2
,
1

0
,
1

1
,
1

2
,
2

0
,
2

1
,
2

2
(3.7)

become, in the long run, equally likely. The distribution of Stern’s sequence modulo 3 is then
P (0, 3) = 1/4 and P (1, 3) = P (2, 3) = 3/8.
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Theorem 3.5. The distribution of Stern’s sequence modulo m is

P (i,m) =
1

m

∏
p|m

p2

p2 − 1

∏
p|(i,m)

p− 1

p
. (3.8)

Proof. By Lemma 3.4, the distribution of an mod m satisfies

P (i,m) = |{(k, j) ∈ Sm : k = i}| /|Sm|. (3.9)

Let g := gcd(i,m). Since

|{(k, j) ∈ Sm : k = i}| = |{j ∈ m : gcd(j, g) = 1}|

=

∣∣∣∣∣∣

m/g⋃
k=1

{j ∈ {kg + 1, . . . , kg + g} : gcd(j, g) = 1


∣∣∣∣∣∣

=
m

g
· {j ∈ g : gcd(j, g) = 1}| = mφ(g)

g
= m

∏
p|g

p− 1

p
,

the result follows by Proposition 3.3. �

3.4. A consequence. Although an mod m is not uniformly distributed, it is, when rounded
down one “digit”.

Corollary 3.6. For all m,
⌊
an
m

⌋
is distributed uniformly modulo mk for all k.

Proof. Note that, by Theorem 3.5, P (i,mk) = P (i,m)/mk−1.
Since

⌊
an
m

⌋
≡ i (mod mk) if and only if an ≡ (mi + j) (mod mk+1) for some j ∈ m, the

distribution of
⌊
an
m

⌋
mod mk is

P (i,mk) =
m∑
i=1

P (mj + i,mk+1) =
m∑
i=1

P (i,m)/mk =
1

mk
. (3.10)

�

Corollary 3.7. For any prime p,
⌊
an
p

⌋
is equidistributed in the p-adic integers Zp.

Example. Here are values of ban/10c mod 100, n ≥ 5× 105:

19, 9, 90, 61, 71, 95, 23, 76, 52, 90, 37, 23, 85, 4, 18, 51, 33, 46, 13, 94, 80, 8, 27, 75, 47, 56,

8, 70, 61, 36, 75, 89, 14, 93, 79, 45, 65, 82, 16, 68, 51, 91, 40, 28, 88, 14, 26, 63, 37, 72, 35,

32, 97, 56, 58, 18, 60, 4, 44, 27, 83, 90, 6, 30, 23, 25, 1, 80, 78, 12, 34, 89, 55, 98, 43, 31, . . .

3.5. The Chinese Remainder Theorem. We note that for any function F : Sm → Z, the
sequence F (an, an+1) mod m has a distribution. Under rather mild conditions, the distribu-
tion has a multiplicative property.

The Chinese Remainder Theorem states that if m ⊥ n (i.e., m and n are relatively prime)
then

Z/(m)× Z/(n) ∼= Z/(mn). (3.11)

If ∗ denotes this isomorphism so that, for example when m = 2, n = 3, 0 ∗ 0 = 0, 1 ∗ 1 =
1, 0 ∗ 2 = 2, 1 ∗ 0 = 3, 0 ∗ 1 = 4, and 1 ∗ 2 = 5, we have an induced isomorphism

Sm × Sn ∼= Smn, [((i, j), (u, v)) 7→ (i ∗ u, j ∗ v)]. (3.12)
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We say that a function F : Z× Z→ Z is normal if, for all m,

F (x, y) ≡ F (x mod m, y mod m) (mod m). (3.13)

Every polynomial in Z[x, y] is normal.

Lemma 3.8. For a normal function F , the sequence F (an, an+1) has distribution satisfying

P (i,m)P (j, n) = P (i ∗ j,mn). (3.14)

Proof. With isomorphism ∗ of (3.12), since

x ∗ y ≡ x (mod m) and x ∗ y ≡ y (mod n),

F (i ∗ u, j ∗ v) ≡ F (i, j) (mod m) and F (i ∗ u, j ∗ v) ≡ F (u, v) (mod n)

and so

F (i ∗ j, u ∗ v) ≡ F (i, j) ∗ F (u, v) (mod mn). (3.15)

Hence, the isomorphism of (3.12) is a bijection between ordered pairs ((i, j), (u, v)) of solutions
of F ≡ a (mod m) and F ≡ b (mod n) and solutions (i ∗ u, j ∗ v) of F ≡ a ∗ b (mod mn). �

4. An analogue of Stern’s sequence

4.1. The distribution of anan+1. As in the proof of Theorem 3.5, we’ll use Lemma 3.4 and
a counting argument.

Dedekind’s psi function is defined by ψ(n) = n
∏
p|n

(
1 +

1

p

)
and satisfies

ψ(n) = φ(n)/J2(n) (4.1)

where, as was noted in Proposition 3.3,

J2(n) = n2
∏(

1− 1

p2

)
(4.2)

is one of the Jordan totient functions that is also the cardinality of Sn.

Lemma 4.1. The distribution of (anan+1) satisfies, for prime powers pn,

P (i, pn) =

{
2

ψ(pn) if p|i,
1

ψ(pn) if p - i.
(4.3)

Proof. Consider Spν with each entry (i, j) replaced by the product ij. For example, applying
this process to S8 yields the array

S
′
8 :=



0 0 0 0
0 1 2 3 4 5 6 7

2 6 2 6
0 3 6 1 4 7 2 5

4 4 4 4
0 5 2 7 4 1 6 3

6 2 6 2
0 7 6 5 4 3 2 1


. (4.4)

For each unit i (i.e., gcd(i, p) = 1), the corresponding row {ij : j ∈ pν} is a permutation of

pν , the corresponding column {ji : j ∈ pν} is a permutation of pν , and the whole of S
′
pν is the

union of these unit rows and unit columns.
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A particular unit u appears once in each unit row and, since u must be a product of units,
it can only occur at an intersection of a unit row and unit column. Hence u occurs φ(pν) times

in S
′
pν .

A particular non-unit v appears once in each unit row and once in each unit column (but

never at the intersection of a row and a column), and so v must occur 2φ(pν) times in S
′
pν .

The result follows. �

Let ω(n) denote the number of distinct prime divisors of n and (i,m) denote the gcd of
i,m. Lemmas 3.8 and 4.1 yield the following theorem.

Theorem 4.2. The distribution of (anan+1) is

P (i,m) =
2ω((i,m))

ψ(m)
. (4.5)

An interesting rephrasing of the Riemann hypothesis is based on one involving Robin’s
inequality and ψ – see [17].

Conjecture 4.3. For Nk := the product of the first k primes,

P (1, Nk) <
π2

6eγNk log logNk
for all k > 2. (4.6)

4.2. The sequence (bn). For non-negative real numbers a, b, let

a⊕ b = a+ b+
√

4ab+ 1. (4.7)

We may form a “diatomic array”, as for Stern’s sequence, but using ⊕ instead of ordinary
addition:

0 0
0 1 0
0 2 1 2 0
0 3 2 6 1 6 2 3 0
0 4 3 10 2 15 6 12 1 12 6 15 2 10 3 4 0
. . . . . . . . . . . . . . . . .

.

An analogue of Stern’s sequence is

b1 = 0, b2n = bn, b2n+1 = bn ⊕ bn+1 (4.8)

The sequence begins

0, 0, 1, 0, 2, 1, 2, 0, 3, 2, 6, 1, 6, 2, 3, 0, 4, 3, 10, 2, 15, 6, 12, 1, 12, 6, 15, ... (4.9)

Although this is an integer sequence (A272569 of [16]), it is hardly clear why it does not take
on irrational values. Its connection with Stern’s sequence, from Theorem 3.6 of [15], explains
why and we state it with the following proposition.

Proposition 4.4. If 2j ≤ k ≤ 2j+1, then bk = a2j+1−kak−2j .

4.3. The distribution of (bn). It follows, by replacing k by 2j + k in Proposition 4.4, that
if 0 ≤ k ≤ 2j then

b2j+k = a2j−kak. (4.10)

By Proposition 3.2, it follows that the sequence b2j , b2j+1, . . . , b2j+1−1 is an involution of the se-
quence a2ja2j+1, a2j+1a2j+2, . . . a2j+1−1a2j+1 . Hence, the distribution of (bn) is that of (anan+1)
(with the important caveat that (bn) has some distribution).
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A difficulty we encounter in this case is that the SB tree mod m does not represent a Markov
chain: on the SB tree, 3

4 7→
5
7 ,

4
5 and 3

1 7→
5
2 ,

4
1 and so, mod 3, 0

1 7→
2
1 ,

1
2 in the first case, but

0
1 7→

1
1 ,

2
2 in the second. We may not then proceed as we did for the CW tree.

Let A0 := ( 1 0
1 1 ) and A1 := ( 1 1

0 1 ). It is a fact that A0 and A1 generate SL2(Z) and therefore,
modulo m, generate SL2(Z/(m)) – see [5]. If ω := ωnωn−1 . . . ω0 is a word in {0, 1}∗, let

[ω] :=
n∑
i=0

ωi · 2i and Aω = Aωn ·Aωn−1 · · ·Aω0 . (4.11)

For example, [01101] = 1 + 4 + 8 = 13 and A01101 = ( 3 5
4 7 ). Note that the determinant of any

Aω is 1.
The following is easy to prove (and is left as an exercise for the reader). See [13] for a similar

result.

Proposition 4.5. For ωj . . . ω0, and n = [ω],

Aω =

(
an+1 an

a2j−n−1 a2j−n

)
. (4.12)

Let M∗ denote the anti-transpose of M and M(x) be the Möbius transformation defined
by M (i.e.,

(
a b
c d

)∗
= ( d bc a ) and

(
a b
c d

)
(x) = ax+b

cx+d). Note that if the words ω of length n are

ordered lexicographically, then the nth row of the SB tree coincides with Aω(1) and the nth
row of the CW tree coincides with A∗ω(1). This of course illustrates a common ground for the
SB and CW trees.

Consider the tree formed by Aω 7→ Aω0, Aω1. For each address (i.e. word) α ∈ {L,R}∗,
substitute 0 for L and 1 for R to get a word w(α) in {0, 1}∗ in Figure 4.

( 1 0
0 1 )

( 1 1
0 1 )

( 1 2
0 1 )

( 1 3
0 1 )( 3 2

1 1 )

( 2 1
1 1 )

( 2 3
1 2 )( 3 1

2 1 )

( 1 0
1 1 )

( 1 1
1 2 )

( 1 2
1 3 )( 2 1

3 2 )

( 1 0
2 1 )

( 1 1
2 3 )( 1 0

3 1 )

Figure 4. The path A∗ → A0 → A01 → A011 goes from ( 1 0
0 1 ) to ( 1 2

1 3 ).

Lemma 4.6. If a
b is at address α on the SB tree, then

Aw(α)(1) =
a

b
. (4.13)

Let Gm := SL2(Z/(m)). Considering the elements of Sm as column vectors, the elements
of Gm act on Sm by matrix multiplication on the left. For a fixed a, and every ( ab ) ∈ Sm, it is
clear that A0 fixes a and permutes the second coordinates. Hence A0 permutes Sm. Similarly,
A1 permutes Sm as well and, since Gm is generated by A0, A1 (since SL2(Z) is – see [5]), every
element of Gm permutes the elements of Sm. Therefore, if a finite sequence v1, v2, . . . , vk in
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Sm is nearly uniform (e.g., every P (a,m) is within ε of 1/m for all a), then so is the sequence
Mv1,Mv2, . . . ,Mvk.

A subtree of the SB-tree is the tree containing all vertices with addresses of the form ω0ω
for some fixed ω0 (as ω varies through {L,R}∗).

Consequently, modulo m, as j →∞, the jth row in any SB subtree approaches the uniform
distribution uniformly over all ω0. Hence, by Lemma 2.1, we have the following theorem.

Theorem 4.7. The distribution of (bn) is

P (i,m) =
2ω((i,m))

ψ(m)
. (4.14)

This distribution satisfies equation (1.3) and thus, as in Corollary 3.6, we have the following.

Corollary 4.8. For all m and k > 0, the sequences
⌊
bn
m

⌋
and

⌊anan+1

m

⌋
are uniformly dis-

tributed modulo mk.

4.4. Generalizations. It turns out that the two distributions defined above satisfy, for an
appropriate f(p),

P (i,m) =
1

m

∏
p|(i,m)

f(p)

p−1
·
∏
p|m

p-(i,m)

1− f(p)

1− p−1
. (4.15)

In particular, the distribution of (an) arises when f(p) = 1
p+1 and the distribution of (bn)

arises when f(p) = 2
p+1 .

Every distribution described by equation (4.15) satisfies

P (0, p) = f(p), P (i, p) = P (j, p) whenever p - i, j (4.16)

as well as the conclusion of Lemma 3.8.
It is worth noting that the uniform distribution is when f(p) = 1

p (and a sequence that has

that distribution is, of course, (n)). An interesting question is: “for what functions f(p) is
there a sequence with a distribution given by (4.15)”? For example, f(p) = 1 gives

P (i,m) =

{
d/m if d|i
0 otherwise

(4.17)

where d is the largest square-free divisor of m. The sequences (n!) and (Rn) (the latter of
which is studied later in this paper) have that distribution for square-free m only. Is there a
sequence with this distribution for all m?

5. Quadratic Forms

A binary primitive integral quadratic form is a function of the form

Q(x, y) := Ax2 +Bxy + Cy2 (5.1)

where A,B,C are relatively prime integers. Its discriminant is the quantity

∆ := B2 − 4AC. (5.2)

For example, Q(x, y) = xy has [A,B,C] = [0, 1, 0] and thus ∆ = 1.
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5.1. The distribution of Q(an, an+1) modulo 2. Let cn := Q(an, an+1). This sequence has
a distribution; we now find a formula for it. Note that, modulo 8, ∆ ∈ {0, 1, 4, 5}.

Lemma 5.1. The sequence cn := Q(an, an+1) has distribution satisfying

P (0, 2) =


0 if ∆ ≡ 5 (mod 8)

1/3 if ∆ ≡ 0 or 4 (mod 8)

2/3 if ∆ ≡ 1 (mod 8).

(5.3)

Proof. Let a, b, c ∈ {0, 1} be defined by A = 2α+ a, B = 2β + b, C = 2γ + c for some α, β, γ.
Since Q is primitive, at least one of a, b, c is odd. Then, modulo 8,

∆ = 4(β(β + b)− ac) + b2. (5.4)

Because consecutive values of an are relatively prime, it follows that, modulo 2, (an, an+1) ∈
{(0, 1), (1, 1), (1, 0)}. Further, since (an) is periodic (with period 3) modulo 2, the values of
(an, an+1) cycle through {(0, 1), (1, 1), (1, 0)} and therefore cn mod 2 cycles through c, a+ b+
c, a.

If ∆ mod 8 is 0 or 4, then b is even, and thus exactly one of c, a + b + c, a is even. If ∆
mod 8 is odd, then b = 1 and, modulo 8, ∆ = 1 + 4ac. If ∆ ≡ 1 (mod 8), then exactly two of
c, a+ b+ c, a are even while if ∆ ≡ 5 (mod 8) then none of c, a+ b+ c, a are even. The result
follows. �

The Legendre symbol is defined, for an odd prime p and integer n, to be(
n

p

)
=


1 if n ≡ x2 (mod p) for some x

−1 if n 6≡ x2 (mod p) for all x

0 if p|n.
(5.5)

It is generally left undefined for p = 2 and, for odd non-prime m, a Jacobi symbol is defined.
We define (

∆

2

)
=


1 if ∆ ≡ 1 (mod 8)

−1 if ∆ ≡ 5 (mod 8)

0 if 2|∆
(5.6)

and so Lemma 5.1 states that P (i, 2) satisfies (4.15) where

f(p) =
1 +

(
∆
p

)
1 + p

. (5.7)

We note that for ∆ an odd prime, our
(

∆
2

)
equals

(
2
∆

)
(its values often called “the second

supplement of the law of quadratic reciprocity”).

5.2. The distribution of Q(an, an+1) modulo p.

Lemma 5.2. The number of solutions in Sp of Q(x, y) = 0 is

(p− 1)

(
1 +

(
∆

p

))
. (5.8)

If p - ∆, then the number of solutions in Sp of the equation Q(x, y) = u for any unit u ∈ F×
is

p−
(

∆

p

)
. (5.9)
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Proof. The case of p = 2 was covered earlier. Let p be an odd prime and let F := Z/(p), the
field with p elements. If A = C = 0 then that is equivalent to Q(x, y) = xy dealt with in the
section on (bn). We may assume A 6= 0 since, otherwise, we can always switch x and y.

The equation

Ax2 +Bux+ Cu2 = 0 (5.10)

can then, by completing the square, be written as

(2Ax+Bu)2

u2
= ∆. (5.11)

If
(

∆
p

)
= 1, then ∆ = v2 for some unit v and so, for every unit u and choice of sign for v,

there is a solution x of (5.11). Hence there are 2(p − 1) solutions altogether. If
(

∆
p

)
= −1,

then ∆ 6= x2 for any x and so (5.11) has no solutions. Lastly, if
(

∆
p

)
= 0 then ∆ = 0 in Zp

and so there is one solution x to (5.11) for each unit u and so there are p − 1 solutions to
(5.11) altogether. Equation (5.8) summarizes these three cases.

Suppose now that p - ∆ so that
(

∆
p

)
= ±1. We first seek the number of solutions of

Q = u where u is a unit and so, since u is arbitrary, we may take A = 1; we thus consider
x2 +Bxy + Cy2 = u where u is a unit.

Set R = F [t]/(t2 + Bt + C), a finite ring. The norm map NR/F : R → F is multiplicative,
and using the basis {1, t}

NR/F (−x+ yt) = det

(
−x −Cy
y −x−By

)
= Q(x, y). (5.12)

Therefore the equation x2 + Bxy + Cy2 = u is the same as NR/F (−x + yt) = u for x, y ∈
F . On units the norm map NR/F : R× → F× is a group homomorphism, so as with all
homomorphisms between finite groups, all values are taken on an equal number of times.
Thus it remains to show the norm map NR/F : R× → F× is surjective.

Case 1: t2 + Bt + C is irreducible in F [t]. Then R is a field so R× is cyclic and the norm
map NR/F : R× → F× on the nonzero elements of finite fields is onto (if |F | = q then |R| = q2

and a generator of R× is mapped to a generator of F×). This corresponds to
(

∆
p

)
= −1 and,

in this case, |R×| = p2 − 1 and thus the number of solutions is | ker(NR/F )| = p + 1 for each
unit.

Case 2: t2+Bt+C is reducible in F [t]. Write it as (t−r)(t−s). Since B2−4C = (r−s)2, from
B2−4C 6= 0 we have r 6= s. Then R ' F [t]/(t−r)×F [t]/(t−r) and in the basis {(1, 0), (0, 1)},
the norm mapping has the formula NR/F (x, y) = xy which maps R× = F× × F× onto F×.

This corresponds to
(

∆
p

)
= 1 and, in this case, |R×| = (p − 1)2 and thus the number of

solutions is | ker(NR/F )| = p− 1 for each unit. �

5.3. The distribution of Q(an, an+1) where m ⊥ ∆. In [6], Theorem 2.1, Conrad proves
the following multi-dimensional Hensel’s lemma.

Lemma 5.3. If |f(a)|p < 1 and ||(∇f)(a)||p = 1, then there exists some α ∈ Z2
p such that

f(α) = 0 and α ≡ a (mod p).
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Suppose p - ∆. Fix z ∈ Zp and let F (x, y) = Ax2 +Bxy+Cy2−(1+pz). If ||∇F (x, y)||p < 1
and gcd(x, y, p) = 1 then p divides both 2Ax+By and Bx+ 2Cy. This implies(

2A B
B 2C

)(
x
y

)
≡
(

0
0

)
(mod p) (5.13)

and thus the determinant of the matrix, B2 − 4AC, is divisible by p – a contradiction. Hence
||∇F (x, y)||p = 1 whenever gcd(x, y, p) = 1.

Hence, for any solution a ∈ Sp of Q(a) = x (x ∈ F ), there are pν−1 solutions of Q(α) ≡ x
(mod p) in Z/(pν). We have the following lemma.

Lemma 5.4. If p is an odd prime and p - ∆, then

P (i, pν) =


(

1 +
(

∆
p

))
/ψ(pν) if p|i(

p−
(

∆
p

))
/(ψ(pν)(p− 1)) if p - i.

(5.14)

By Lemma 5.3 and the multiplicative property of ψ(n), we have the following theorem.

Theorem 5.5. For a binary primitive integral quadratic form Q with discriminant ∆, if
m ⊥ ∆ then

P (i,m) =
1

m

∏
p|(i,m)

f(p)

p−1
·
∏
p|m

p-(i,m)

1− f(p)

1− p−1
(5.15)

where

f(p) =
1 +

(
∆
p

)
p+ 1

. (5.16)

Corollary 5.6. For a binary primitive integral quadratic form Q, let xn := Q(an, an+1). For
all m relatively prime to ∆, bxnm c is uniformly distributed modulo mk for all k.

5.4. Further directions. Curiously, the distribution of the primitive values of Q modulo
m depends only on the discriminant of Q (as long as this discriminant and m are relatively
prime). Since non-equivalent quadratic forms take on different values, it seems inevitable that
their distributions will differ modulo m when gcd(m,∆) 6= 1.

As for the section on (bn), the sequence

cn := Q(a2j+n, a2j+1−n) for 2j ≤ n ≤ 2j+1 (5.17)

has the same distribution as Q(an, an+1). Furthermore, (cn) will obey the Stern-like recursion

c2n = cn, c2n+1 = cn ⊕ cn+1 (5.18)

if ⊕ is defined by

x⊕ y = x+ y +
√

4xy + ∆ (5.19)

or, equivalently, when |ad− bc| = 1 then

Q(a+ b, c+ d) = Q(a, c)⊕Q(b, d). (5.20)
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6. Fibonacci Representations

Every integer can be represented in at least one way as a sum of distinct Fibonacci numbers
– see [4].

Let Rn denote the number of ways to represent n as a sum of distinct Fibonacci numbers.
Its generating function thus satisfies

∞∑
n=0

Rnx
n =

∞∏
i=2

(
1 + xFn

)
. (6.1)

It also has a recursive definition

Rn =
∑

σ(i)∈{n,n−1}

Ri (6.2)

where σ(n) :=
⌊
nφ+ 1

φ

⌋
is the “Fibonacci shift” (called ρ in [15]). This recursion can be

implemented in Maple; here’s for the shifted sequence r(n) = Rn−1:

r := proc(n) option remember; if n < 2 then 1; elif sigma(n + 1) - sigma(n) = 2
then r(sigma(n) - n); else r(2*n - 2 - sigma(n - 1)) + r(2*n - 1 - sigma(n - 1)); end
if; end proc

The first few terms of Rn are (for n = 0, 1, 2, . . .):

1, 1, 1, 2, 1, 2, 2, 1, 3, 2, 2, 3, 1, 3, 3, 2, 4, 2, 3, 3, 1, 4, 3, 3, 5, 2, 4, 4, 2, 5, 3, 3, 4, 1, 4, 4, 3, 6, . . . (6.3)

6.1. Words. For a word ω ∈ {0, 1}∗, let

R(ω) := R[ω] where [ωkωk−1 . . . ω0] :=
k∑
i=0

ωiFi+2. (6.4)

We define the set of “Zeckendorf words” as

Z := 1{0, 01}∗ (6.5)

and recall that for every positive integer n, there is a unique ω ∈ Z such that [ω] = n. We
define the set of “blockhead words” to be

B := 1{00, 01}∗00 (6.6)

and define

Λ := {0, 010, 01010, . . .} = 0{10}∗. (6.7)

Lemma 6.1. For all Ω ∈ B and ω ∈ Z ∪Λ,

R(Ωω) = R(Ω)R(ω). (6.8)

Proof. For Ω ∈ B, if ρ is a Fibonacci representation of [Ω] then it must end in 00 or 11. For
ω ∈ Z∪Λ, if ρ′ is a Fibonacci representation of [ω] then it begins with 10 or 01 (and no other
representation starts with 00). Therefore, every representation of [Ωω] is a concatenation of
two words that represent [Ω] and [ω] respectively. �
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0 1

00 01 10 11

000 001 010 011 100 111101 110

0

1

3 64 5

1 2 3

1 2

0

0

0

0 2 3 4 5 6 7 8 9 10 111

Figure 5. Vertices labeled by path, and by number.

6.2. Fibonacci triangle. In Figure 5, a Fibonacci hyperbolic graph (see [13, 15]). with
vertices labeled with words in {0, 1}∗, sometimes in multiple ways. On the right are numerical
values assigned in the obvious way. The fact that R3 = 2 is illustrated by the two words 011,
100 on the left and 3 on the right.

Next, we label each square with the Zeckendorf word of its top vertex; Figure 6 is of the
subtree headed by the word representing 3. There, the blockhead words are in boldface and
they are at the head of “blocks” of the form ΩZ ∪ ΩΛ.

100000 100001 100010 100100 100101 101000 101001

10000 1010010001 10010

1000 1001

100

Figure 6. Sub-triangle labeled with Zeckendorf representations.

Following the construction of Pascal’s triangle, start with box on top of the Fibonacci
triangle labeled 1 and then fill out according to the rule: for each square of side length
Cφ−n+1, take the sum of the numbers of all adjacent squares of side length Cφ−n. The
subtriangle corresponding to the one in Figure 6 are illustrated in Figure 7. The numbers in
Figure 8 are, of course, just R(ω) for each ω in Figure 7.

A block headed by Ω is characterized in Figure 7, via Lemma 6.1, by having every number
in it a multiple of R(Ω).

6.3. The function g(n). Let g(n) denote the sequence

1, 3, 4, 8, 9, 11, 12, 21, 22, 24, . . . (6.9)

defined by, for εi ∈ {0, 1},

g :
k∑
i=0

εi2
i 7−→

k∑
i=0

εiF2i+2. (6.10)
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1 1

1 12 2

2

3 2 2 3
1 3 3 2 4 2 3 3 1

Figure 7. A triangle labeled by Rn.

The set {g(n)} is the set of all numbers represented as a sum of distinct even-indexed Fibonacci
numbers (OEIS sequence A054204 [16]). This function also satisfies the recursive definition:

g(1) = 1, g(2n) = g(n) + σ(g(n)), g(2n+ 1) = g(2n) + 1 (6.11)

with σ, the Fibonacci shift, defined above.
The following is an analogue of Theorem 4.1 of [13]

Rn =
∑

σ(i)+j=n

Ig(N)(i) · Ig(N)(j). (6.12)

The following result, from a paper by Bicknell-Johnson (Theorem 2.1 of [1]), shows that
Stern’s sequence is a subsequence of (R(n)).

Lemma 6.2. For all j, R(g(j)) = aj+1.

Theorem 6.3. For (Rn), P (0,m) = 1 for all m.

Proof. For each blockhead word Ω ∈ B, we define a “block” Ω(Z ∪ Λ) := {Ωω : ω ∈ Z ∪ Λ}
and note that for every ρ in that block, [Ω] divides [ρ]. Let |ω| be the length of the word ω.
Note that every Zeckendorf word of length at least 3 that does not represent 1 appears in one
of the blocks.

In a block Ω(Z ∪ Λ), the number of words ω of length n + |Ω| is approximately Fn so,
asymptotically,

P (0, [Ω]) ≥ δ :=
1

φ|Ω|
. (6.13)

But this is true of all blocks and, since the entire set of words is a union of blocks, we have
that P (0, [Ω]) is at least δ plus δ times what remains and, in general,

P (0, [Ω]) ≥ 1− (1− δ)n for all n. (6.14)

Hence P (0, [Ω]) = 1 for each Ω and, by Lemma 6.2, since g(2n) = a2n+1 takes on all positive
integer values, the result follows. �
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