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Abstract. In this note we solve the Diophantine equation Nn = xa±xb+1, where Nn denotes
the n-th Narayana number, a, b are nonnegative integers with 0 ≤ b < a and 2 ≤ x ≤ 30.

1. Introduction

Narayana’s cows sequence {Nn}n≥0 is a ternary recurrent sequence given by the recurrence
relation

Nn+3 = Nn+2 +Nn,

with seeds N0 = 0, N1 = 1, N2 = 1. It is named after a 14th- century Indian mathematician
Narayana Pandit [1] and the sequence first appeared in the book “Ganita kaumudi”. The
OEIS (Online Encyclopedia of Integer Sequences) number of {Nn}n≥0 is A000930. The first
few terms are

0, 1, 1, 1, 2, 3, 4, 6, 9, 13, 19, 28, 41, · · · .

The characteristic equation of {Nn}n≥0 is f(x) = x3 − x2 − 1 = 0 and the characteristic roots
are:
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where w = −1+i
√

3
2 . The closed form known as the Binet’s formula is given by

Nn = Xαn + Y βn + Zγn for all n ≥ 0,

with

X =
α

(α− β)(α− γ)
, Y =

β

(β − α)(β − γ)
, Z =

γ

(γ − α)(γ − β)
.

This can also be rewritten as Nn = Cαα
n+2 +Cββ

n+2 +Cγγ
n+2 for all n ≥ 0 where Cx = 1

x3+2

for x ∈ {α, β, γ}. The minimal polynomial of Cα is 31x3 − 31x2 + 10x− 1 and all the zeros of
this polynomial are inside the unit circle. One can approximate the following:

α ≈ 1.46557; |β| = |γ| ≈ 0.826031; |Cββn+2 + Cγγ
n+2| < 1/2 for all n ≥ 1.
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Using induction it is easy to prove that

αn−2 ≤ Nn ≤ αn−1 holds for all n ≥ 1. (1.1)

Recently, many research work have been done involving the term of a linear recurrent
sequence and sum or difference of powers of two or three primes. For example, Marques
and Togbé find all Fibonacci and Lucas numbers of the form 2a + 3b + 5c, in nonnegative
integers a, b, c, with max{a, b} < c. Luca and Szalay [5] proved that the Diophantine equation
Fn = pa±pb+1 admits many effectively computable positive integer solutions (n, p, a, b) where
p is a prime number, n > 2 and max{a, b} ≥ 2. In [8], Rihane et al. studied all Padovan and
Perrin numbers of the form xa ± xb + 1.

In this work, we are interested to find Narayana numbers of the form xa ± xb + 1. In
particular, we solve the exponential Diophantine equation

Nn = xa ± xb + 1. (1.2)

Our main theorem is the following.

Theorem 1.1. All the solutions of (1.2) satisfy a < n < 1.8 · 1032(log x)4. Furthermore the
only solutions of (1.2) in positive integers (n, x, a, b) with 0 ≤ b < a and 2 ≤ x ≤ 30 are given
by

(n, x, a, b) ∈


(6, 2, 1, 0), (7, 2, 2, 0), (7, 4, 1, 0), (8, 7, 1, 0),
(9, 2, 3, 2), (9, 3, 2, 1), (9, 11, 1, 0), (10, 2, 4, 1),
(10, 17, 1, 0), (11, 26, 1, 0), (12, 2, 5, 3), (22, 12, 3, 2),
(23, 7, 4, 3)


for xa + xb + 1 and

(n, x, a, b) ∈


(4, 2, 1, 0), (5, 2, 2, 1), (5, 3, 1, 0), (6, 2, 2, 0),
(6, 4, 1, 0), (7, 6, 1, 0), (8, 2, 4, 3), (8, 3, 2, 0),
(8, 9, 1, 0), (9, 2, 4, 2), (9, 4, 2, 1), (9, 13, 1, 0)
(10, 3, 3, 2), (10, 19, 1, 0), (11, 28, 1, 0), (15, 2, 8, 7)


for xa − xb + 1.

2. Preliminaries

Baker’s concept performs a vital role in reducing the bounds concerning linear forms in
logarithms of algebraic numbers. Let η be an algebraic number with minimal primitive poly-
nomial

f (X) = a0x
d + a1x

d−1 + . . .+ ad = a0

d∏
i=1

(X − η(i)) ∈ Z [X],

where the leading coefficient a0 > 0, and η(i)’s are conjugates of η. Then, the logarithmic height
of η is given by

h(η) =
1

d

log a0 +

d∑
j=1

max{0, log |η(j)|}

 .
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The following are some properties of the logarithmic height function which will be used later
in our proof.

h(η + γ) ≤ h(η) + h(γ) + log 2,

h(ηγ±1) ≤ h(η) + h(γ),

h(ηk) = |k|h(η), k ∈ Z.

The following theorem of Matveev (see [7] or [2, Theorem 9.4]) provides a large upper bound
for the subscript n in (1.2).

Theorem 2.1. Let η1, η2, . . . , ηl be positive real algebraic integers in a real algebraic number

field L of degree dL and b1, b2, . . . , bl be non zero integers. If Γ =
∏l
i=1 η

bi
i −1 is not zero, then

log |Γ| > −1.4 · 30l+3l4.5d2
L(1 + log dL)(1 + logD)A1A2 . . . Al,

where D = max{|b1|, |b2|, . . . , |bl|} and A1, A2, . . . , Al are positive real numbers such that

Aj ≥ max{dLh (ηj) , | log ηj |, 0.16} for j = 1, . . . , l.

The following result of Baker and Davenport due to Dujella and Pethő [3, Lemma 5] provides
a reduced bound for the subscript n in (1.2).

Lemma 2.2. Let M be a positive integer and p/q be a convergent of the continued fraction of
the irrational number τ such that q > 6M . Let A, B, µ be some real numbers with A > 0 and
B > 1. Let ε := ‖µq‖ −M‖τq‖, where ‖.‖ denotes the distance from the nearest integer. If
ε > 0, then there exists no solution to the inequality

0 < |uτ − v + µ| < AB−w,

in positive integers u, v, w with

u ≤M and w ≥ log(Aq/ε)

logB
.

The following lemma will be used in our proof. It is seen in [4, Lemma 7].

Lemma 2.3. Let r ≥ 1 and H > 0 be such that H > (4r2)r and H > L/(logL)r. Then

L < 2rH(logH)r.

The following result shows that n is larger than a in (1.2).

Lemma 2.4. All solutions of (1.2) satisfy

a

(
log x

logα

)
− log 2

logα
+ 1 < n < a

(
log x

logα

)
+

log 3

logα
+ 2.

Proof. By virtue of (1.1) and (1.2), we have

αn−2 < Nn = xa ± xb + 1 < xa + xb + 1 < 3xa.

Taking logarithm on both sides,

(n− 2) logα < log 3 + a log x,

which implies

n < a

(
log x

logα

)
+

log 3

logα
+ 2.
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Similarly,

xa

2
< xa − xb < xa ± xb + 1 = Nn < αn−1

gives

a

(
log x

logα

)
− log 2

logα
+ 1 < n.

�

The following result will also be used in our proof.

Lemma 2.5. If |ez − 1| < y < 1
2 for real values of z and y, then |z| < 2y.

Proof. If z ≥ 0, we have 0 ≤ z ≤ ez − 1 = |ez − 1| < y. If z < 0, then |ez − 1| < 1
2 . From this,

we get e|z| < 2, and therefore 0 < |z| < e|z| − 1 = e|z||ez − 1| < 2y. so, in both cases, we get
|z| < 2y. �

3. Proof of Theorem 1.1

Using Binet’s formula of Narayana’s cows sequence in (1.2), we get

Cαα
n+2 + Cββ

n+2 + Cγγ
n+2 = xa ± xb + 1. (3.1)

We can write (3.1)as

Cαα
n+2 − xa = −

(
Cββ

n+2 + Cγγ
n+2
)
± xb + 1,

which implies ∣∣Cααn+2 − xa
∣∣ < 1

2
+ xb + 1 < xb+1.

Dividing both sides by xa, we get∣∣Cααn+2x−a − 1
∣∣ < 1

xa−b−1
. (3.2)

Put

Γ = Cαα
n+2x−a − 1.

One can check that Γ 6= 0. Suppose Γ = 0, then

Cαα
n+2 = xa. (3.3)

Let σ be the automorphism of the Galois group of the splitting field of f(x) over Q defined
by σ(α) = β, where f(x) = x3 − x2 − 1 is the minimal polynomial of α. Applying σ on both
sides of (3.3), we get

|Cββn+2| = xa,

which is not possible since |Cββn+2| < |Cβ| ≈ 0.407506 . . . < 1, whereas xa > 1. Therefore,
Γ 6= 0. Now, we are ready to apply Theorem 2.1 with the following data:

η1 = Cα, η2 = α, η3 = x, b1 = 1, b2 = n+ 2, b3 = −a, l = 3,

with dL = [Q(α) : Q] = 3.
Since a < n, take D = n+ 2. The heights of η1, η2, η3 are calculated as follows.

h(η1) = h(Cα) =
log 31

3
, h(η2) = h(α) =

logα

3
, h(η3) = h(x) = log x.
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Thus, we take

A1 = log 31, A2 = logα, A3 = 3 log x.

Applying Theorem 2.1 we find

log |Γ| > −1.4 · 30634.532(1 + log 3)(1 + log(n+ 2))(log 31)(logα)(3 log x)

> −1.1 · 1013 log(1 + log(n+ 2)) log x.

The above inequality together with (3.2), gives

(a− b− 1) log x < 1.1 · 1013(log x)(1 + log(n+ 2)).

Then, we get

(a− b) < 1.2 · 1013(1 + log(n+ 2)). (3.4)

Writing (3.1) in another way,

Cαα
n+2 − xa ∓ xb = −

(
Cββ

n+2 + Cγγ
n+2
)

+ 1.

Taking absolute values on both sides, we obtain∣∣∣Cααn+2 − xa ∓ xb
∣∣∣ < 1.5.

Dividing both sides by xa ± xb, we get∣∣∣Cα(xa−b ± 1)−1αn+2x−b − 1
∣∣∣ < 1.5

xa ± xb

<
3

xa

<
9

αn−2
<

1

αn−6
. (3.5)

Put

Γ′ = Cα(xa−b ± 1)−1αn+2x−b − 1.

By using similar reason as above we can show that Γ′ 6= 0. Again with the notations of
Theorem 2.1, we take

η1 = Cα(xa−b ± 1)−1, η2 = α, η3 = x, b1 = 1, b2 = n+ 2, b3 = −b, l = 3,

with dL = [Q(α) : Q] is 3.
Since b < a < n, take D = n+ 2. The height of η1 is computed as

h(η1) = h
(
Cα(xa−b ± 1)−1

)
≤ h(Cα) + h

(
xa−b ± 1

)
≤ log 31

3
+ (a− b) log x+ log 2.

Hence from (3.4), we get

h(η1) < 1.21 · 1013(1 + log(n+ 2)) log x.

The heights for η2 and η3 are

h(η2) =
logα

3
and h(η3) = log x.
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So, we take

A1 = 3.64 · 1013(1 + log(n+ 2)) log x, A2 = logα and A3 = 3 log x.

Using all these values in Theorem 2.1, we have

log |Γ′| > −1.4 · 30634.532(1 + log 3)(1 + log(n+ 2))(3.64 · 1013(1 + log(n+ 2)) log x)

(logα)(3 log x).

Comparing the above inequality with (3.5) implies that

(n− 6) logα < 1.2 · 1026(1 + log(n+ 2))2(log x)2. (3.6)

Thus, we conclude that

n < 3.2 · 1026(1 + log(n+ 2))2(log x)2 < 5.1 · 1027(log n)2(log x)2. (3.7)

With the notation of Lemma 2.3, we take r = 2, L = n and H = 5.1 · 1027(log x)2. Applying
Lemma 2.3, we have

n < 22(5.1 · 1027(log x)2)(log(5.1 · 1027(log x)2)2

< (2.1 · 1028(log x)2)(64 + 2 log log x)2

< (2.1 · 1028(log x)2)(92 log x)2

< 1.8 · 1032(log x)4.

Now, for 2 ≤ x ≤ 30, we have

n < 2.4 · 1034.

This bound is too large, so we need to reduce it. Put

Λ = (n+ 2) logα− a log x+ logCα.

The inequality (3.2) can be written as

|eΛ − 1| < 1

xa−b−1
<

1

2a−b−1
.

Notice that Λ 6= 0 as eΛ − 1 = Γ 6= 0. Assuming (a− b) ≥ 2, the right-hand side in the above
inequality is at most 1

2 . Using Lemma 2.5 we obtain

0 < |Λ| < 2

xa−b−1
,

which implies that

|(n+ 2) logα− a log x+ logCα| <
2

xa−b−1
.

Dividing both sides by log x gives∣∣∣∣n( logα

log x

)
− a+

(
log(α2Cα)

log x

)∣∣∣∣ < 2.89

xa−b−1
. (3.8)

Now, we are ready to apply Lemma 2.2 with the following data:

u = n, τ =

(
logα

log x

)
, v = a, µ =

(
log(α2Cα)

log x

)
, A = 2.89, B = x, w = a− b− 1.

Note that logα
log x /∈ Q because if logα

log x = s
t for some coprime positive integers s and t, we would

have xs = αt ∈ Z. Using the automorphism σ defined above, we get 1 < xs = |βt| < 1,
a contradiction. Choosing M = 2.4 · 1034, we find the convergent q84 exceeds 6M with
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ε := ‖µq84‖ −M‖τq84‖ > 0.015. So all the conditions of Lemma 2.2 are fulfilled. Hence,
there exists no solution to the inequality (3.8) if

a− b− 1 ≥ log((2.89q84)/0.015)

log x
≥ 125.

Thus, we must have a− b < 126.
Now for a− b < 126, put

Λ′ = (n+ 2) logα− b log x+ log

(
Cα

xa−b ± 1

)
.

The inequality (3.5) can be written as

|eΛ′ − 1| < 1

αn−6
.

Assuming n ≥ 8, the right-hand side in the above inequality is at most 1
α2 <

1
2 . Using Lemma

2.5 we get

|Λ′| < 2

αn−6
,

which implies that ∣∣∣∣(n+ 2) logα− b log x+ log

(
Cα

xa−b ± 1

)∣∣∣∣ < 2

αn−6
.

Dividing both sides by log x gives∣∣∣∣∣∣n
(

logα

log x

)
− b+

 log
(

α2Cα
xa−b±1

)
log x

∣∣∣∣∣∣ < 2.89 · α−(n−6). (3.9)

Now, let

u = n, τ =

(
logα

log x

)
, v = b, µ =

 log
(

α2Cα
xa−b±1

)
log x


A = 2.89, B = α, w = n− 6.

We find q84 exceeds 6M with ε := ‖µq84‖ −M‖τq84‖ > 0.015. Thus, by Lemma 2.2, we see
that the inequality (3.9) has no solution if

n ≥ log((2.89 · q84)/0.015)

logα
≥ 329.

So, it has to be n < 329. Finally, we run a program in Mathematica with 2 ≤ x ≤ 30 and
n < 329 and get all the solutions listed in Theorem 1.1.
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