ON THE DIOPHANTINE EQUATION $N_{n}=x^{a} \pm x^{b}+1$

PRASANTA KUMAR RAY AND KISAN BHOI

Abstract. In this note we solve the Diophantine equation $N_{n}=x^{a} \pm x^{b}+1$, where N_{n} denotes the n-th Narayana number, a, b are nonnegative integers with $0 \leq b<a$ and $2 \leq x \leq 30$.

1. Introduction

Narayana's cows sequence $\left\{N_{n}\right\}_{n \geq 0}$ is a ternary recurrent sequence given by the recurrence relation

$$
N_{n+3}=N_{n+2}+N_{n},
$$

with seeds $N_{0}=0, N_{1}=1, N_{2}=1$. It is named after a 14th- century Indian mathematician Narayana Pandit [1] and the sequence first appeared in the book "Ganita kaumudi". The OEIS (Online Encyclopedia of Integer Sequences) number of $\left\{N_{n}\right\}_{n \geq 0}$ is A000930. The first few terms are

$$
0,1,1,1,2,3,4,6,9,13,19,28,41, \cdots .
$$

The characteristic equation of $\left\{N_{n}\right\}_{n \geq 0}$ is $f(x)=x^{3}-x^{2}-1=0$ and the characteristic roots are:

$$
\begin{aligned}
& \alpha=\frac{1}{3}+\left(\frac{29}{54}+\sqrt{\frac{31}{108}}\right)^{\frac{1}{3}}+\left(\frac{29}{54}-\sqrt{\frac{31}{108}}\right)^{\frac{1}{3}} \\
& \beta=\frac{1}{3}+w\left(\frac{29}{54}+\sqrt{\frac{31}{108}}\right)^{\frac{1}{3}}+w^{2}\left(\frac{29}{54}-\sqrt{\frac{31}{108}}\right)^{\frac{1}{3}} \\
& \gamma=\bar{\beta}=\frac{1}{3}+w\left(\frac{29}{54}-\sqrt{\frac{31}{108}}\right)^{\frac{1}{3}}+w^{2}\left(\frac{29}{54}+\sqrt{\frac{31}{108}}\right)^{\frac{1}{3}}
\end{aligned}
$$

where $w=\frac{-1+i \sqrt{3}}{2}$. The closed form known as the Binet's formula is given by

$$
N_{n}=X \alpha^{n}+Y \beta^{n}+Z \gamma^{n} \text { for all } n \geq 0,
$$

with

$$
X=\frac{\alpha}{(\alpha-\beta)(\alpha-\gamma)}, Y=\frac{\beta}{(\beta-\alpha)(\beta-\gamma)}, Z=\frac{\gamma}{(\gamma-\alpha)(\gamma-\beta)} .
$$

This can also be rewritten as $N_{n}=C_{\alpha} \alpha^{n+2}+C_{\beta} \beta^{n+2}+C_{\gamma} \gamma^{n+2}$ for all $n \geq 0$ where $C_{x}=\frac{1}{x^{3}+2}$ for $x \in\{\alpha, \beta, \gamma\}$. The minimal polynomial of C_{α} is $31 x^{3}-31 x^{2}+10 x-1$ and all the zeros of this polynomial are inside the unit circle. One can approximate the following:

$$
\alpha \approx 1.46557 ;|\beta|=|\gamma| \approx 0.826031 ;\left|C_{\beta} \beta^{n+2}+C_{\gamma} \gamma^{n+2}\right|<1 / 2 \text { for all } n \geq 1
$$

Using induction it is easy to prove that

$$
\begin{equation*}
\alpha^{n-2} \leq N_{n} \leq \alpha^{n-1} \text { holds for all } n \geq 1 \tag{1.1}
\end{equation*}
$$

Recently, many research work have been done involving the term of a linear recurrent sequence and sum or difference of powers of two or three primes. For example, Marques and Togbé find all Fibonacci and Lucas numbers of the form $2^{a}+3^{b}+5^{c}$, in nonnegative integers a, b, c, with $\max \{a, b\}<c$. Luca and Szalay [5] proved that the Diophantine equation $F_{n}=p^{a} \pm p^{b}+1$ admits many effectively computable positive integer solutions (n, p, a, b) where p is a prime number, $n>2$ and $\max \{a, b\} \geq 2$. In [8], Rihane et al. studied all Padovan and Perrin numbers of the form $x^{a} \pm x^{b}+1$.

In this work, we are interested to find Narayana numbers of the form $x^{a} \pm x^{b}+1$. In particular, we solve the exponential Diophantine equation

$$
\begin{equation*}
N_{n}=x^{a} \pm x^{b}+1 . \tag{1.2}
\end{equation*}
$$

Our main theorem is the following.
Theorem 1.1. All the solutions of (1.2) satisfy $a<n<1.8 \cdot 10^{32}(\log x)^{4}$. Furthermore the only solutions of (1.2) in positive integers (n, x, a, b) with $0 \leq b<a$ and $2 \leq x \leq 30$ are given by

$$
(n, x, a, b) \in\left\{\begin{array}{l}
\left.\left.\begin{array}{l}
(6,2,1,0),(7,2,2,0),(7,4,1,0),(8,7,1,0) \\
(9,2,3,2),(9,3,2,1),(9,11,1,0),(10,2,4,1), \\
(10,17,1,0),(11,26,1,0),(12,2,5,3),(22,12,3,2), \\
(23,7,4,3)
\end{array}\right\}, ~\right\}
\end{array}\right\}
$$

for $x^{a}+x^{b}+1$ and

$$
(n, x, a, b) \in\left\{\begin{array}{l}
(4,2,1,0),(5,2,2,1),(5,3,1,0),(6,2,2,0) \\
(6,4,1,0),(7,6,1,0),(8,2,4,3),(8,3,2,0) \\
(8,9,1,0),(9,2,4,2),(9,4,2,1),(9,13,1,0) \\
(10,3,3,2),(10,19,1,0),(11,28,1,0),(15,2,8,7)
\end{array}\right\}
$$

for $x^{a}-x^{b}+1$.

2. Preliminaries

Baker's concept performs a vital role in reducing the bounds concerning linear forms in logarithms of algebraic numbers. Let η be an algebraic number with minimal primitive polynomial

$$
f(X)=a_{0} x^{d}+a_{1} x^{d-1}+\ldots+a_{d}=a_{0} \prod_{i=1}^{d}\left(X-\eta^{(i)}\right) \in \mathbb{Z}[X],
$$

where the leading coefficient $a_{0}>0$, and $\eta^{(i)}$'s are conjugates of η. Then, the logarithmic height of η is given by

$$
h(\eta)=\frac{1}{d}\left(\log a_{0}+\sum_{j=1}^{d} \max \left\{0, \log \left|\eta^{(j)}\right|\right\}\right) .
$$

THE FIBONACCI QUARTERLY

The following are some properties of the logarithmic height function which will be used later in our proof.

$$
\begin{gathered}
h(\eta+\gamma) \leq h(\eta)+h(\gamma)+\log 2, \\
h\left(\eta \gamma^{ \pm 1}\right) \leq h(\eta)+h(\gamma), \\
h\left(\eta^{k}\right)=|k| h(\eta), k \in \mathbb{Z} .
\end{gathered}
$$

The following theorem of Matveev (see [7] or [2, Theorem 9.4]) provides a large upper bound for the subscript n in (1.2).

Theorem 2.1. Let $\eta_{1}, \eta_{2}, \ldots, \eta_{l}$ be positive real algebraic integers in a real algebraic number field \mathbb{L} of degree $d_{\mathbb{L}}$ and $b_{1}, b_{2}, \ldots, b_{l}$ be non zero integers. If $\Gamma=\prod_{i=1}^{l} \eta_{i}^{b_{i}}-1$ is not zero, then

$$
\log |\Gamma|>-1.4 \cdot 30^{l+3} l^{4.5} d_{\mathbb{L}}^{2}\left(1+\log d_{\mathbb{L}}\right)(1+\log D) A_{1} A_{2} \ldots A_{l},
$$

where $D=\max \left\{\left|b_{1}\right|,\left|b_{2}\right|, \ldots,\left|b_{l}\right|\right\}$ and $A_{1}, A_{2}, \ldots, A_{l}$ are positive real numbers such that

$$
A_{j} \geq \max \left\{d_{\mathbb{L}} h\left(\eta_{j}\right),\left|\log \eta_{j}\right|, 0.16\right\} \text { for } j=1, \ldots, l \text {. }
$$

The following result of Baker and Davenport due to Dujella and Pethő [3, Lemma 5] provides a reduced bound for the subscript n in (1.2).

Lemma 2.2. Let M be a positive integer and p / q be a convergent of the continued fraction of the irrational number τ such that $q>6 M$. Let A, B, μ be some real numbers with $A>0$ and $B>1$. Let $\varepsilon:=\|\mu q\|-M\|\tau q\|$, where $\|$.$\| denotes the distance from the nearest integer. If$ $\varepsilon>0$, then there exists no solution to the inequality

$$
0<|u \tau-v+\mu|<A B^{-w},
$$

in positive integers u, v, w with

$$
u \leq M \text { and } w \geq \frac{\log (A q / \varepsilon)}{\log B} .
$$

The following lemma will be used in our proof. It is seen in [4, Lemma 7].
Lemma 2.3. Let $r \geq 1$ and $H>0$ be such that $H>\left(4 r^{2}\right)^{r}$ and $H>L /(\log L)^{r}$. Then

$$
L<2^{r} H(\log H)^{r} .
$$

The following result shows that n is larger than a in (1.2).
Lemma 2.4. All solutions of (1.2) satisfy

$$
a\left(\frac{\log x}{\log \alpha}\right)-\frac{\log 2}{\log \alpha}+1<n<a\left(\frac{\log x}{\log \alpha}\right)+\frac{\log 3}{\log \alpha}+2 .
$$

Proof. By virtue of (1.1) and (1.2), we have

$$
\alpha^{n-2}<N_{n}=x^{a} \pm x^{b}+1<x^{a}+x^{b}+1<3 x^{a} .
$$

Taking logarithm on both sides,

$$
(n-2) \log \alpha<\log 3+a \log x,
$$

which implies

$$
n<a\left(\frac{\log x}{\log \alpha}\right)+\frac{\log 3}{\log \alpha}+2 .
$$

Similarly,

$$
\frac{x^{a}}{2}<x^{a}-x^{b}<x^{a} \pm x^{b}+1=N_{n}<\alpha^{n-1}
$$

gives

$$
a\left(\frac{\log x}{\log \alpha}\right)-\frac{\log 2}{\log \alpha}+1<n .
$$

The following result will also be used in our proof.
Lemma 2.5. If $\left|e^{z}-1\right|<y<\frac{1}{2}$ for real values of z and y, then $|z|<2 y$.
Proof. If $z \geq 0$, we have $0 \leq z \leq e^{z}-1=\left|e^{z}-1\right|<y$. If $z<0$, then $\left|e^{z}-1\right|<\frac{1}{2}$. From this, we get $e^{|z|}<2$, and therefore $0<|z|<e^{|z|}-1=e^{|z|}\left|e^{z}-1\right|<2 y$. so, in both cases, we get $|z|<2 y$.

3. Proof of Theorem 1.1

Using Binet's formula of Narayana's cows sequence in (1.2), we get

$$
\begin{equation*}
C_{\alpha} \alpha^{n+2}+C_{\beta} \beta^{n+2}+C_{\gamma} \gamma^{n+2}=x^{a} \pm x^{b}+1 . \tag{3.1}
\end{equation*}
$$

We can write (3.1) as

$$
C_{\alpha} \alpha^{n+2}-x^{a}=-\left(C_{\beta} \beta^{n+2}+C_{\gamma} \gamma^{n+2}\right) \pm x^{b}+1,
$$

which implies

$$
\left|C_{\alpha} \alpha^{n+2}-x^{a}\right|<\frac{1}{2}+x^{b}+1<x^{b+1} .
$$

Dividing both sides by x^{a}, we get

$$
\begin{equation*}
\left|C_{\alpha} \alpha^{n+2} x^{-a}-1\right|<\frac{1}{x^{a-b-1}} . \tag{3.2}
\end{equation*}
$$

Put

$$
\Gamma=C_{\alpha} \alpha^{n+2} x^{-a}-1 .
$$

One can check that $\Gamma \neq 0$. Suppose $\Gamma=0$, then

$$
\begin{equation*}
C_{\alpha} \alpha^{n+2}=x^{a} . \tag{3.3}
\end{equation*}
$$

Let σ be the automorphism of the Galois group of the splitting field of $f(x)$ over \mathbb{Q} defined by $\sigma(\alpha)=\beta$, where $f(x)=x^{3}-x^{2}-1$ is the minimal polynomial of α. Applying σ on both sides of (3.3), we get

$$
\left|C_{\beta} \beta^{n+2}\right|=x^{a},
$$

which is not possible since $\left|C_{\beta} \beta^{n+2}\right|<\left|C_{\beta}\right| \approx 0.407506 \ldots<1$, whereas $x^{a}>1$. Therefore, $\Gamma \neq 0$. Now, we are ready to apply Theorem 2.1 with the following data:

$$
\eta_{1}=C_{\alpha}, \eta_{2}=\alpha, \eta_{3}=x, b_{1}=1, b_{2}=n+2, b_{3}=-a, l=3,
$$

with $d_{\mathbb{L}}=[\mathbb{Q}(\alpha): \mathbb{Q}]=3$.
Since $a<n$, take $D=n+2$. The heights of $\eta_{1}, \eta_{2}, \eta_{3}$ are calculated as follows.

$$
h\left(\eta_{1}\right)=h\left(C_{\alpha}\right)=\frac{\log 31}{3}, h\left(\eta_{2}\right)=h(\alpha)=\frac{\log \alpha}{3}, h\left(\eta_{3}\right)=h(x)=\log x .
$$

THE FIBONACCI QUARTERLY

Thus, we take

$$
A_{1}=\log 31, A_{2}=\log \alpha, A_{3}=3 \log x .
$$

Applying Theorem 2.1 we find

$$
\begin{aligned}
\log |\Gamma| & >-1.4 \cdot 30^{6} 3^{4.5} 3^{2}(1+\log 3)(1+\log (n+2))(\log 31)(\log \alpha)(3 \log x) \\
& >-1.1 \cdot 10^{13} \log (1+\log (n+2)) \log x .
\end{aligned}
$$

The above inequality together with (3.2), gives

$$
(a-b-1) \log x<1.1 \cdot 10^{13}(\log x)(1+\log (n+2)) .
$$

Then, we get

$$
\begin{equation*}
(a-b)<1.2 \cdot 10^{13}(1+\log (n+2)) . \tag{3.4}
\end{equation*}
$$

Writing (3.1) in another way,

$$
C_{\alpha} \alpha^{n+2}-x^{a} \mp x^{b}=-\left(C_{\beta} \beta^{n+2}+C_{\gamma} \gamma^{n+2}\right)+1 .
$$

Taking absolute values on both sides, we obtain

$$
\left|C_{\alpha} \alpha^{n+2}-x^{a} \mp x^{b}\right|<1.5 .
$$

Dividing both sides by $x^{a} \pm x^{b}$, we get

$$
\begin{align*}
\left|C_{\alpha}\left(x^{a-b} \pm 1\right)^{-1} \alpha^{n+2} x^{-b}-1\right| & <\frac{1.5}{x^{a} \pm x^{b}} \\
& <\frac{3}{x^{a}} \\
& <\frac{9}{\alpha^{n-2}}<\frac{1}{\alpha^{n-6}} . \tag{3.5}
\end{align*}
$$

Put

$$
\Gamma^{\prime}=C_{\alpha}\left(x^{a-b} \pm 1\right)^{-1} \alpha^{n+2} x^{-b}-1 .
$$

By using similar reason as above we can show that $\Gamma^{\prime} \neq 0$. Again with the notations of Theorem 2.1, we take

$$
\eta_{1}=C_{\alpha}\left(x^{a-b} \pm 1\right)^{-1}, \eta_{2}=\alpha, \eta_{3}=x, b_{1}=1, b_{2}=n+2, b_{3}=-b, l=3,
$$

with $d_{\mathbb{L}}=[\mathbb{Q}(\alpha): \mathbb{Q}]$ is 3 .
Since $b<a<n$, take $D=n+2$. The height of η_{1} is computed as

$$
\begin{aligned}
h\left(\eta_{1}\right) & =h\left(C_{\alpha}\left(x^{a-b} \pm 1\right)^{-1}\right) \\
& \leq h\left(C_{\alpha}\right)+h\left(x^{a-b} \pm 1\right) \\
& \leq \frac{\log 31}{3}+(a-b) \log x+\log 2 .
\end{aligned}
$$

Hence from (3.4), we get

$$
h\left(\eta_{1}\right)<1.21 \cdot 10^{13}(1+\log (n+2)) \log x .
$$

The heights for η_{2} and η_{3} are

$$
h\left(\eta_{2}\right)=\frac{\log \alpha}{3} \text { and } h\left(\eta_{3}\right)=\log x .
$$

So, we take

$$
A_{1}=3.64 \cdot 10^{13}(1+\log (n+2)) \log x, A_{2}=\log \alpha \text { and } A_{3}=3 \log x
$$

Using all these values in Theorem 2.1, we have

$$
\begin{array}{r}
\log \left|\Gamma^{\prime}\right|>-1.4 \cdot 30^{6} 3^{4.5} 3^{2}(1+\log 3)(1+\log (n+2))\left(3.64 \cdot 10^{13}(1+\log (n+2)) \log x\right) \\
(\log \alpha)(3 \log x) .
\end{array}
$$

Comparing the above inequality with (3.5) implies that

$$
\begin{equation*}
(n-6) \log \alpha<1.2 \cdot 10^{26}(1+\log (n+2))^{2}(\log x)^{2} . \tag{3.6}
\end{equation*}
$$

Thus, we conclude that

$$
\begin{equation*}
n<3.2 \cdot 10^{26}(1+\log (n+2))^{2}(\log x)^{2}<5.1 \cdot 10^{27}(\log n)^{2}(\log x)^{2} . \tag{3.7}
\end{equation*}
$$

With the notation of Lemma 2.3, we take $r=2, L=n$ and $H=5.1 \cdot 10^{27}(\log x)^{2}$. Applying Lemma 2.3, we have

$$
\begin{aligned}
n & <2^{2}\left(5.1 \cdot 10^{27}(\log x)^{2}\right)\left(\log \left(5.1 \cdot 10^{27}(\log x)^{2}\right)^{2}\right. \\
& <\left(2.1 \cdot 10^{28}(\log x)^{2}\right)(64+2 \log \log x)^{2} \\
& <\left(2.1 \cdot 10^{28}(\log x)^{2}\right)(92 \log x)^{2} \\
& <1.8 \cdot 10^{32}(\log x)^{4} .
\end{aligned}
$$

Now, for $2 \leq x \leq 30$, we have

$$
n<2.4 \cdot 10^{34}
$$

This bound is too large, so we need to reduce it. Put

$$
\Lambda=(n+2) \log \alpha-a \log x+\log C_{\alpha}
$$

The inequality (3.2) can be written as

$$
\left|e^{\Lambda}-1\right|<\frac{1}{x^{a-b-1}}<\frac{1}{2^{a-b-1}} .
$$

Notice that $\Lambda \neq 0$ as $e^{\Lambda}-1=\Gamma \neq 0$. Assuming $(a-b) \geq 2$, the right-hand side in the above inequality is at most $\frac{1}{2}$. Using Lemma 2.5 we obtain

$$
0<|\Lambda|<\frac{2}{x^{a-b-1}},
$$

which implies that

$$
\left|(n+2) \log \alpha-a \log x+\log C_{\alpha}\right|<\frac{2}{x^{a-b-1}}
$$

Dividing both sides by $\log x$ gives

$$
\begin{equation*}
\left|n\left(\frac{\log \alpha}{\log x}\right)-a+\left(\frac{\log \left(\alpha^{2} C_{\alpha}\right)}{\log x}\right)\right|<\frac{2.89}{x^{a-b-1}} . \tag{3.8}
\end{equation*}
$$

Now, we are ready to apply Lemma 2.2 with the following data:

$$
u=n, \tau=\left(\frac{\log \alpha}{\log x}\right), v=a, \mu=\left(\frac{\log \left(\alpha^{2} C_{\alpha}\right)}{\log x}\right), A=2.89, B=x, w=a-b-1 .
$$

Note that $\frac{\log \alpha}{\log x} \notin \mathbb{Q}$ because if $\frac{\log \alpha}{\log x}=\frac{s}{t}$ for some coprime positive integers s and t, we would have $x^{s}=\alpha^{t} \in \mathbb{Z}$. Using the automorphism σ defined above, we get $1<x^{s}=\left|\beta^{t}\right|<1$, a contradiction. Choosing $M=2.4 \cdot 10^{34}$, we find the convergent q_{84} exceeds $6 M$ with

THE FIBONACCI QUARTERLY

$\varepsilon:=\left\|\mu q_{84}\right\|-M\left\|\tau q_{84}\right\|>0.015$. So all the conditions of Lemma 2.2 are fulfilled. Hence, there exists no solution to the inequality $(\sqrt{3.8})$ if

$$
a-b-1 \geq \frac{\log \left(\left(2.89 q_{84}\right) / 0.015\right)}{\log x} \geq 125 .
$$

Thus, we must have $a-b<126$.
Now for $a-b<126$, put

$$
\Lambda^{\prime}=(n+2) \log \alpha-b \log x+\log \left(\frac{C_{\alpha}}{x^{a-b} \pm 1}\right)
$$

The inequality (3.5) can be written as

$$
\left|e^{\Lambda^{\prime}}-1\right|<\frac{1}{\alpha^{n-6}}
$$

Assuming $n \geq 8$, the right-hand side in the above inequality is at most $\frac{1}{\alpha^{2}}<\frac{1}{2}$. Using Lemma 2.5 we get

$$
\left|\Lambda^{\prime}\right|<\frac{2}{\alpha^{n-6}},
$$

which implies that

$$
\left|(n+2) \log \alpha-b \log x+\log \left(\frac{C_{\alpha}}{x^{a-b} \pm 1}\right)\right|<\frac{2}{\alpha^{n-6}} .
$$

Dividing both sides by $\log x$ gives

$$
\begin{equation*}
\left|n\left(\frac{\log \alpha}{\log x}\right)-b+\left(\frac{\log \left(\frac{\alpha^{2} C_{\alpha}}{x^{a-b} \pm 1}\right.}{\log x}\right)\right|<2.89 \cdot \alpha^{-(n-6)} . \tag{3.9}
\end{equation*}
$$

Now, let

$$
\begin{gathered}
u=n, \tau=\left(\frac{\log \alpha}{\log x}\right), v=b, \mu=\left(\frac{\log \left(\frac{\alpha^{2} C_{\alpha}}{x^{a-b} \pm 1}\right)}{\log x}\right) \\
A=2.89, B=\alpha, w=n-6 .
\end{gathered}
$$

We find q_{84} exceeds $6 M$ with $\varepsilon:=\left\|\mu q_{84}\right\|-M\left\|\tau q_{84}\right\|>0.015$. Thus, by Lemma 2.2, we see that the inequality (3.9) has no solution if

$$
n \geq \frac{\log \left(\left(2.89 \cdot q_{84}\right) / 0.015\right)}{\log \alpha} \geq 329
$$

So, it has to be $n<329$. Finally, we run a program in Mathematica with $2 \leq x \leq 30$ and $n<329$ and get all the solutions listed in Theorem 1.1.

References

[1] J. P. Allouche and T. Johnson, Narayana's cows and delayed morphisms, In articles of 3rd computer music conference JIM96, France (1996).
[2] Y. Bugeaud, M. Mignotte and S. Siksek, Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers, Ann. of Math. (2) 163 (2006), 969-1018.
[3] A. Dujella and A. Pethő, A generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser., 49 (1998), 291-306.
[4] S. Gúzman Sánchez and F. Luca, Linear combinations of factorials and s-units in a binary recurrence sequence, Ann. Math. du Qué., 38 (2014), 169-188.
[5] F. Luca and L. Szalay, Fibonacci numbers of the form $p^{a} \pm p^{b}+1$, Fibonacci Quart., 45 (2007), 98-103.
[6] D. Marques and A. Togbé, Fibonacci and Lucas numbers of the form $2^{a}+3^{b}+5^{c}$, Proc. Japan Acad., 89 (2013), 47-50.
[7] E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers II, Izv. Ross. Akad. Nauk Ser. Mat., 64 (2000), 125-180. Translation in Izv. Math., 64 (2000), 1217-1269.
[8] S. E. Rihane, B. Kafle and A. Togbé, Padovan and Perrin numbers of the form $x^{a} \pm x^{b}+1$, Ann. Math. Inform., (2022), 1-14.

MSC2020: 11D61, 11B39, 11J86
Department of Mathematics, Sambalpur University, Jyoti Vihar, Burla, India
Email address: prasantamath@suniv.ac.in
Department of Mathematics, Sambalpur University, Jyoti Vihar, Burla, India
Email address: kisanbhoi.95@suniv.ac.in

