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Abstract. We obtain a meromorphic continuation of the generalized Tribonacci zeta func-
tion to the whole complex plane. The residues of the generalized Tribonacci zeta functions
associated to the third-order Jacobsthal, Tribonacci and Narayana sequence at negative inte-
ger poles are computed.

1. Introduction

Zeta functions associated to integer sequences are important analytic objects; the most
notable example of such a zeta function is the Riemann zeta function defined for complex
numbers s with Re(s) > 1 as the absolutely convergent series

ζ(s) =

∞∑
n=1

1

ns
,

and which can be viewed as the zeta function associated to positive integers.
Zeta functions encode arithmetic properties of sequences they are associated to, and they

are related to many mathematical and physical phenomena. Hence, it is of interest to study
zeta functions associated to different types of integer sequences.

In 1995 Silverman proposed a problem of finding meromorphic continuation of a zeta func-
tion associated to a recurrence sequence of the second order, which was solved independently
by Bradley and Darling in 1999 (see [17]). Since then, several authors investigated analytic
continuation of classical and multiple zeta functions associated to the second order number
sequences. In those works, the corresponding zeta functions are named by the sequence they
are associated to.

Meromorphic continuation of the Fibonacci zeta function was given independently by Egami
[6] and Navas [14]. In 2013 Kamano [12] obtained meromorphic continuation of the Lucas zeta
function with a complete list of poles and their corresponding residues. Kamano also showed
that the Lucas zeta function associated to certain special Lucas sequences possesses trivial
zeros at even negative integers, and computed its values at negative integers at which it is
holomorphic. The Hurwitz-type zeta function associated to the Lucas sequence was studied
in [18], where the polar structure of this function was fully described.

Meher and Rout studied meromorphic continuation of the multiple Fibonacci zeta functions
[16] and the multiple Lucas zeta functions [13]. A deep study of multiple zeta functions associ-
ated with linear recurrence sequences was conducted by Essouabri, Matsumoto and Tsumura
in [8]. Elsner, Klyve and Toe [7] deduced meromorphic continuation of the juggling zeta
function to the entire complex plane; Behera, Dutta, and Ray [2] meromorphically continued
the Lucas-balancing zeta function to the entire complex plane. Sourmelidis in [19] derived
properties of the zeta function and the Hurwitz-type zeta function associated to the Beatty
sequence. The Lipschitz-Lerch zeta function associated with the Beatty sequence was studied
in [1].
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In the present paper we introduce the generalized Tribonacci zeta function, which is a zeta
function associated to the generalized Tribonacci sequence. We prove in Theorem 3.1 and
Corollary 3.2 below that the generalized Tribonacci zeta function possesses a meromorphic
continuation to the whole complex plane and identify its poles. We also study its special
values at negative integers and investigate the polar structure at negative integers of zeta
functions associated to the third-order Jacobsthal sequence, Tribonacci sequence and Narayana
sequence. The following Corollary, which is proved in Example 4.5, illustrates results of the
paper. We refer to sections 2 and 3 for the missing notation.

Corollary 1.1. Assume that the argument of the complex conjugate root of the characteristic
equation (4.2) of the Narayana sequence is not a rational multiple of π. Then, the Narayana
zeta function ζN (s) is holomorphic at negative integers, except at the simple poles s = −3`,
` ∈ N at which its residue equals

Res
s=−3`

ζN (s) =
1

logα

(
3`

2`

)(
2`

`

)
(31)−`,

where α is the real root of the characteristic equation of the Narayana sequence.

2. Binet’s formula for the generalized Tribonacci numbers

The generalized Tribonacci sequence {Tn(r, s, t)}n≥0 for fixed nonzero constants r, s and t
is defined by the third-order recurrence relation

Tn+3 = rTn+2 + sTn+1 + tTn, n ≥ 0, (2.1)

where the sequence starts with arbitrary initial values T0, T1 and T2.
The characteristic equation for the recurrence (2.1) is given by

x3 − rx2 − sx− t = 0. (2.2)

The Cardano formula yields that the roots α, β and γ of (2.2) are given by

α =
r

3
+ P +Q, β =

r

3
+ ωP + ω2Q, γ =

r

3
+ ω2P + ωQ,

where ω = exp (2πi/3),

P = P (r, s, t) =

(
r3

27
+
rs

6
+
t

2
+
√

∆

) 1
3

, Q = Q(r, s, t) =

(
r3

27
+
rs

6
+
t

2
−
√

∆

) 1
3

and

∆ = ∆(r, s, t) =
r3t

27
− r2s2

108
+
rst

6
− s3

27
+
t2

4
.

By convention, the second and the third roots are taken to be equal to their principal values
(i.e. to the values determined by the principal branch of the logarithm). More precisely, for

∆ > 0, the value
√

∆ is positive and numbers P and Q are real.

Remark 2.1. Let us note here that the quantity ∆ defined above is a constant multiple of
the discriminant D = r2s2 + 4s3 − 4r3t − 27t2 − 18rst of the equation (2.2). More precisely,
D = −108∆.

Throughout this paper we assume that T0 = 0, T1 = T2 = 1, which are the initial values
for the Tribonacci, Narayana and the third-order Jacobsthal sequences (defined through ap-
propriate choices of r, s and t in (2.1)). Assuming that α 6= β, β 6= γ, and α 6= γ the Binet
formula for the generalized Tribonacci numbers from [4, Theorem 3.2] reads as

Tn = Aαn +Bβn + Cγn, (2.3)
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where

A =
1− β − γ

(α− β)(α− γ)
, B =

1− α− γ
(β − α)(β − γ)

, C =
1− α− β

(γ − α)(γ − β)
. (2.4)

In other words, when the roots α, β, γ of the characteristic equation (2.2) are pairwise
distinct, the generalized Tribonacci number Tn can be written as a linear combination of
powers αn, βn, and γn with coefficients A, B, and C given by (2.4).

When the roots are not distinct, they must be real. Using the generalized Binet formula
from [10, Section 3.7] (or [9, Lemma 2.2]), one can show that the n−th term of the generalized
Tribonacci sequence with the initial conditions T0 = 0, T1 = T2 = 1 is given by

Tn =

{
(A1n+B1)α

n −B1β
n, if α is a double root and β is a simple root;(

A2n
2 +B2n

)
αn, if α is a triple root,

(2.5)

where A1 = 1−α−β
α(α−β) , B1 = 2α−1

(α−β)2 , A2 = 1−2α
2α2 and B2 = 4α−1

2α2 .

Throughout this paper, we impose the following technical assumptions on parameters r, s
and t and values ∆, P, Q related to the cubic equation (2.2):

1) ∆ > 0, 2)
r

3
+ P +Q > 1, 3) Pr +Qr + 3PQ > 0. (2.6)

Assumptions (2.6) provide sufficient conditions under which the roots of (2.2) are pairwise
distinct and have nice properties, as proved in the following lemma.

Lemma 2.2. Under assumptions (2.6) related to the parameters of the cubic equation (2.2),
the root α is real and the roots β and γ are complex-conjugate roots of the equation (2.2) that
satisfy α > 1 and |β| = |γ| < α.

Proof. The first condition in (2.6) implies that α is real and β and γ are a pair of complex
conjugate roots of the cubic equation (2.2). The second condition implies that α > 1. A

simple calculation shows that α2 − |β|2 = Pr + Qr + 3PQ. Therefore, the third condition
implies |β| < α. �

The roots β and γ are complex-conjugate, hence we can write γ = β = |β|eiφ, for some
phase φ. Now, it is easy to verify that C = B = |B|eiδ, for some δ ∈ [0, 2π).

The cubic equation (2.2) which satisfies assumptions (2.6) can be written as:

x3 − (α+ 2 |β| cosφ)x2 +
(

2α |β| cosφ+ |β|2
)
x− α |β|2 = 0. (2.7)

Moreover, under assumptions (2.6), it is trivial to see that Tn ∼ Aαn, as n→∞, hence the
series

∑
n≥1 T −an converges absolutely for every positive number a.

Remark 2.3. If the characteristic equation (2.2) has a double or a triple root that is greater
than one (in which case assumptions (2.6) are obviously not satisfied), then |Tn| grows at least
as αn, as n → ∞, hence the series

∑
n≥1 T −an also converges absolutely for every positive

number a.
However, the techniques for their meromorphic continuation used in Section 3 below do not

apply in this setting, due to the fact that Tn can no longer be expressed as a linear combination
of the n−th powers of roots (the coefficients are either linear or quadratic in n, see equation
(2.5)). Possibly a different method of continuation based on an integral representation can be
employed. We leave this question to an interested reader.
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3. Generalized Tribonacci zeta function

The generalized Tribonacci zeta function associated to the generalized Tribonacci sequence
{Tn}n≥0, with initial conditions T0 = 0, T1 = T2 = 1 is defined for complex numbers s with
Re(s) > 0 by the absolutely convergent series

ζT (s) :=
∞∑
n=1

1

T sn
.

Recall that we assume that assumptions (2.6) hold true, meaning that Tn = Aαn +Bβn +
Cγn, where α is a real number bigger than one, β and γ are complex conjugates and A, B, C
are given by (2.4).

In the following theorem we prove that ζT (s) can be meromorphically continued to the
whole complex plane and identify its poles.

Theorem 3.1. Let n0 ∈ N be the smallest integer such that
∣∣∣2|B|A (

|β|
α

)n∣∣∣ < 1 for all n ≥ n0.

For Re(s) > 0 the function ζT (s) can be written as

ζT (s) =

n0−1∑
n=1

1

(Aαn +Bβn + Cγn)s

+A−s
∞∑
k=0

(
−s
k

)(
|B|
A

)k k∑
l=0

(
k

l

)
eiδ(2l−k)

(
βk−lγl

αs+k

)n0 αs+k

αs+k − βk−lγl
.

(3.1)

The expression on the right-hand side of (3.1) provides holomorphic continuation of ζT (s) to
the whole complex plane except for possible simple poles at

s = sk,l,n = −k + k
log |β|
logα

+
(k − 2l)φ+ 2nπ

logα
i, k, l ∈ N0, l ≤ k, n ∈ Z. (3.2)

Proof. First, we notice that the inequality |β| < α implies that 2|B|
A

(
|β|
α

)n
→ 0 as n → ∞,

hence there exists the smallest integer n0 such that
∣∣∣2|B|A (

|β|
α

)n∣∣∣ < 1 for all n ≥ n0.
Our starting point is the identity Bβn + Cγn = 2 |B| |β|n cos (nφ+ δ) which follows from

equations γ = β = |β|eiφ and C = B = |B|eiδ. Using the Binet formula (2.3) we can write
ζT (s) for Re(s) > 0 as

ζT (s) =
∞∑
n=1

1

(Aαn +Bβn + Cγn)s
=
∞∑
n=1

1

(Aαn + 2 |B| |β|n cos (nφ+ δ))s

=

∞∑
n=1

(Aαn)−s
(

1 +
2 |B|
A

(
|β|
α

)n
cos (nφ+ δ)

)−s
.

For n ≥ n0 one has
∣∣∣2|B|A (

|β|
α

)n
cos (nφ+ δ)

∣∣∣ < 1 hence using the Taylor series expansion of(
1 + 2|B|

A

(
|β|
α

)n
cos (nφ+ δ)

)−s
we get

ζT (s) =

n0−1∑
n=1

1

(Aαn +Bβn + Cγn)s

+

∞∑
n=n0

(Aαn)−s
∞∑
k=0

(
−s
k

)(
2 |B|
A

)k
(cos (nφ+ δ))k

(
|β|
α

)nk
.
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The first sum on the right-hand side of the equation above is obviously holomorphic every-
where. Due to the exponential decay of the terms in the second double sum, for Re(s) > 0 we
can interchange the order of summation to get

∞∑
n=n0

(Aαn)−s
∞∑
k=0

(
−s
k

)(
2 |B|
A

)k
(cos (nφ+ δ))k

(
|β|
α

)nk
= A−s

∞∑
k=0

(
−s
k

)(
|B|
A

)k ∞∑
n=n0

|β|nk α−(s+k)n
(
ei(nφ+δ) + e−i(nφ+δ)

)k
= A−s

∞∑
k=0

(
−s
k

)(
|B|
A

)k ∞∑
n=n0

|β|nk α−(s+k)n
k∑
l=0

(
k

l

)
einφ(k−2l)eiδ(k−2l)

= A−s
∞∑
k=0

(
−s
k

)(
|B|
A

)k k∑
l=0

(
k

l

)
eiδ(k−2l)

(
|β|k−l |β|l

αs+k
eiφ(k−l)e−iφl

)n0

·

·
∞∑
n=0

(
|β|k−l |β|l

αs+k
eiφ(k−l)e−iφl

)n

= A−s
∞∑
k=0

(
−s
k

)(
|B|
A

)k k∑
l=0

(
k

l

)
eiδ(k−2l)

(
βk−lγl

αs+k

)n0 1

1− βk−lγl

αs+k

= A−s
∞∑
k=0

(
−s
k

)(
|B|
A

)k k∑
l=0

(
k

l

)
eiδ(k−2l)

(
βk−lγl

αs+k

)n0 αs+k

αs+k − βk−lγl
.

Therefore,

ζT (s) =

n0−1∑
n=1

1

(Aαn +Bβn + Cγn)s

+A−s
∞∑
k=0

(
−s
k

)(
|B|
A

)k k∑
l=0

(
k

l

)
eiδ(k−2l)

(
βk−lγl

αs+k

)n0 αs+k

αs+k − βk−lγl
.

The last expression is holomorphic function on C, except for possible poles. Poles are derived
from the equation αs+k − βk−lγl = 0, which is equivalent to

exp((s+ k) logα) = exp(k log |β|+ iφ(k − 2l)),

hence poles are given by (3.2). �

Corollary 3.2. Let 2|Bβ| < |Aα|. Then, the function ζT (s) can be meromorphically continued
to the whole s-plane and expressed as

ζT (s) := A−s
∞∑
k=0

k∑
l=0

(
−s
k

)(
k

l

)(
C

A

)l
Bk−l βk−lγl

αk+s − βk−lγl
.

This function is holomorphic except for possible simple poles given by (3.2) and the corre-
sponding residues

Res
s=sk,l,n

ζT (s) =
1

logα

(
−sk,l,n
k

)(
k

l

)
Bk−lC l

Ask,l,n+k
.
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Proof. The assumption 2|Bβ| < |Aα| implies that
∣∣∣2|B|A (

|β|
α

)n∣∣∣ < 1 for all n ≥ 1. Taking

n0 = 1 in Theorem 3.1 yields that

ζT (s) = A−s
∞∑
k=0

k∑
l=0

(
−s
k

)(
k

l

)(
C

A

)l
Bk−l βk−lγl

αk+s − βk−lγl
.

The possible poles are identified in Theorem 3.1 and the residue at the pole s = sk,l,n is given
by

Res
s=sk,l,n

ζT (s) = A−sk,l,n
(
−sk,l,n
k

)(
k

l

)(
B

A

)k (C
B

)l
βk−lγl lim

s→sk,l,n

s− sk,l,n
αs+k − βk−lγl

=

(
−sk,l,n
k

)(
k

l

)
Bk−lC l

Ask,l,n+k
lim

s→sk,l,n

s− sk,l,n
αs+k

βk−lγl
− 1

.

A simple computation, based on the Taylor series expansion of

αs+k

βk−lγl
= exp (logα(s− sk,l,n))

yields that

Res
s=sk,l,n

ζT (s) =
1

logα

(
−sk,l,n
k

)(
k

l

)
Bk−lC l

Ask,l,n+k
.

�

Remark 3.3. The method of proof of the above theorem can be applied to deduce meromorphic
continuation (and identify poles) of a zeta function associated to a sequence satisfying a higher
degree recurrence relation with constant coefficients, under certain assumptions on the roots
of the corresponding characteristic equation. Assuming that the roots of the characteristic
equation are all distinct, the generalized Binet formula (see e.g. [9, Lemma 2.2]) applies to
show that the n−th term in the recurrence sequence is expressed as a linear combination of
the n−th powers of the roots. If the absolute values of roots are e.g. bigger than one, the
above method applies to yield a meromorphic continuation of the zeta function associated to
this sequence.

These assumptions can be relaxed with some more work. It is easy to see that the method
works well if e.g. the smallest absolute value of the root is less than one; some roots can have
absolute value equal to one and so on. For example, the method can be applied in case when
the roots of the characteristic equation are pairwise complex conjugates with different absolute
values, at least one of which is bigger than one.

As the degree of the equation increases, the expressions necessarily become more complicated,
but with some extra work one can identify poles of the zeta function.

4. Special values at negative integers

From Theorem 3.1 it is easy to see that the generalized Tribonacci zeta function possesses
the simple pole at s = s0,0,0 = 0 with the residue equal to 1

logα . This means that the residue

at s = 0 of the generalized Tribonacci zeta function uniquely determines the real root of the
corresponding characteristic equation (2.2).

In this section we will study special values of the generalized Tribonacci zeta function at
negative integers. First, we will prove the lemma below which gives sufficient conditions on the
zeros of the characteristic equation (2.2) under which the generalized Tribonacci zeta function
ζT (s) possesses poles at negative integers.
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Lemma 4.1. With the notation as above, under assumption (2.6), the generalized Tribonacci
zeta function ζT (s) possesses poles at s = −m, for some m ∈ N if and only if:

(i) |β| = 1 and either m is even or φ = 2nπ
2l−m , for some n ∈ Z and l ∈ {0, . . . ,m}, or

(ii) |β| < 1, and m can be written as m = q + k for any two positive integers k, q which

satisfy the following conditions: |β| = α−q/k and either k is even or φ = 2nπ
2l−k , for

some n ∈ Z and l ∈ {0, . . . , k}.

Before we prove the lemma, let us note here that integers k, q in the part (ii) are not

necessarily coprime. In other words, if k0 is the smallest positive integer such that |β| = α−q0/k0

for some positive integer q0, then for all ` ∈ N such that k = `k0 satisfies the second condition
in part (ii), the generalized Tribonacci zeta function ζT (s) possesses poles at s = −`(q0 + k0).

Proof. We start by observing that s = sk,l,n is not a pole of ζT (s), if
(−s
k

)
= 0. This means

that a negative integer s = sk,l,n can be a pole of ζT (s) only if |β| ≤ 1.
If |β| = 1, one has sk,l,n = −m if and only if k = m and (m− 2l)φ = 2nπ, for some n ∈ Z

and l ∈ {0, . . . ,m}, which proves part (i).

If |β| > 1, the number sk,l,n can be a negative integer if and only if k log |β|
logα is a negative

integer, i.e. equal to some −q for q ∈ N and (2l−k)φ = 2nπ, for some n ∈ Z and l ∈ {0, . . . , k}.
This proves part (ii). �

Remark 4.2. Let us further emphasize the following two special cases.

1. Assume that the real root α > 1 of the characteristic equation (2.2) is a Salem number.
Then, the complex conjugate roots β and γ must have modulus 1, i.e. β = γ = eiφ, for some
φ ∈ (0, π). In this case, the generalized Tribonacci zeta function of the corresponding sequence
possesses poles at even negative integers s2`,`,0 = −2` with the residues

Res
s=s2`,`,0

ζT (s) =
1

logα

(
2`

`

)
B`C` =

1

logα

(
2`

`

)(
(1− α)2 − 2(1− α) cosφ+ 1

4 sin2 φ(α2 − 2α cosφ+ 1)

)`
.

2. Assume that the real root α of the characteristic equation (2.2) is a Pisot number less than
2, i.e. α is a real algebraic integer greater than one which has all its conjugates inside the
unit disc |z| < 1. Then, it must be a unit, hence t = 1, which combined with (2.7) yields that

α|β|2 = 1, meaning that |β| = α−1/2. In this case, the generalized Tribonacci zeta function
possesses poles at negative integers s = s2`,`,0 = −3`, ` ∈ N. Poles at other negative integers

might exist only in case that the number eiφ = β/|β| is some root of unity. We find this
outcome highly unlikely, in view of properties of the conjugate Pisot numbers elaborated in [11]
and [5]. However, we were not able to prove that the argument of a conjugate of the third order
Pisot number is not a rational multiple of π. We find this question very interesting but out of
the scope of the present work.

Example 4.3. We will first consider the third-order Jacobsthal sequence J = {Jn}n≥0 given
by the recurrence Jn+3 = Jn+2+Jn+1+2Jn, n ≥ 0, with the initial values J0 = 0, J1 = J2 = 1.
One can easily verify that the coefficients of the corresponding characteristic cubic equation
satisfy assumptions (2.6). The roots of the characteristic equation are given by

α = 2, β = γ = e
2πi
3 =

−1 +
√

3i

2
.

350 VOLUME 60, NUMBER 5



ON THE GENERALIZED TRIBONACCI ZETA FUNCTION

These roots satisfy the first condition in Lemma 4.1, i.e. |β| = |γ| = 1. Since φ = 2π
3 , the zeta

function

ζJ (s) :=

∞∑
n=1

1

Jsn

associated to the third-order Jacobsthal sequence J = {Jn}n≥1 possesses poles at negative
integers s = −k if and only if k = 2l+ 3n, for some l ∈ N0, l ≤ k, n ∈ Z. It is easy to see that
this is not possible only for k = 1. Therefore, the zeta function associated to the third-order
Jacobsthal sequence has poles at s = −k for k ∈ N0 \ {1}. An elementary calculation yields
values of the constants A, B and C given by (2.4):

A =
2

3
, B = C =

−3− 2
√

3i

21
.

One can easily verify that B = C = 1√
21
eiδ, where δ = arctan 2

√
3

3 − π. The inequality

2|Bβ| < |Aα| is obviously satisfied, hence Corollary 3.2 applies to determine the residues of
the third-order Jacobsthal zeta function at the pole s = −k for k ∈ N0 \ {1}. We get

Res
s=−k

ζJ (s) =
1

21k/2 log 2

∑
l∈{0,1,...,k}

(2l−k)≡0(mod 3)

(
k

l

)
ei(k−2l)δ.

In the case when k is an even number (k = 2m for some m ∈ N), we get

Res
s=−2m

ζJ (s) =
1

21m log 2

(2m

m

)
+ 2

∑
l∈{0,1,...,m−1}
(l−m)≡0(mod 3)

(
2m

l

)
cos (2(m− l)δ)

 .

Similarly, in the case when k is an odd number (k = 2m+ 1, m ∈ N), we get

Res
s=−2m−1

ζJ (s) =
2

21m+1/2 log 2

∑
l∈{0,1,...,m−1}

(2l−2m−1)≡0(mod 3)

(
2m+ 1

l

)
cos ((2m− 2l + 1)δ).

Example 4.4. Let us investigate the polar structure of the zeta function associated to the
Tribonacci sequence T = {Tn}n≥0 given by the third-order recurrence Tn+3 = Tn+2+Tn+1+Tn,
n ≥ 0, with initial values T0 = 0, T1 = T2 = 1. It is easy to verify that the coefficients of the
corresponding characteristic equation

x3 − x2 − x− 1 = 0 (4.1)

satisfy assumptions (2.6). The roots of the characteristic equation for the given recurrence are

α =
1

3

(
1 +

3

√
19 + 3

√
33 +

3

√
19− 3

√
33

)
≈ 1.83929, β = γ = |β| eφi,

where

φ = arctan

√3
(

3
√

19 + 3
√

33− 3
√

19− 3
√

33
)

2− 3
√

19 + 3
√

33− 3
√

19− 3
√

33

+ π.

Number α is the third order Pisot number less than 2, hence |β| = α−1/2 < 1. According
to the discussion from Remark 4.2, part 2, the generalized Tribonacci zeta function possesses
poles at negative integers s = s2`,`,0 = −3`, ` ∈ N. A simple computation shows that the
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inequality 2|Bβ| < |Aα| is satisfied, hence Corollary 3.2 applies to determine the residues of
ζT (s).

Assuming further that the phase φ of the Pisot conjugate β is not a rational multiple of π,
the residue of the Tribonacci zeta function at the pole s = −3`, ` ∈ N is given by

Res
s=−3`

ζT (s) =
1

logα

(
3`

2`

)(
2`

`

)
A`|B|2` =

1

logα

(
3`

`, `, `

)
(ABC)`.

Here, we denote by
(

3`
`,`,`

)
the multinomial coefficient (3`)!

`!`!`! .

The product ABC can be calculated using (2.4) and Vieta’s formulas for the cubic equation
(4.1):

α+ β + γ = 1,

αβ + αγ + βγ = −1,

αβγ = 1.

Namely, we get

ABC = − αβγ

[(α− β)(β − γ)(α− γ)]2
= − 1

D
,

where D is the discriminant of the equation (4.1). Trivially, D = −44, hence assuming that the
phase φ of the Pisot conjugate β is not a rational multiple of π, the residue of the Tribonacci
zeta function at the pole s = −3`, ` ∈ N equals

Res
s=−3`

ζT (s) =
1

logα

(
3`

`, `, `

)
(44)−`.

In general, i.e. without further assumptions on the phase φ, the poles of the Tribonacci zeta
function are given by s = −3k

2 , for k ∈ 2N0 with the residues

Res
s=− 3k

2

ζT (s) =
1

logα

∑
(k,`,n)∈Aφ

(
3k/2

k

)(
k

`

)
A
k
2 |B|kei(k−2`)δ,

where δ is the argument of B and Aφ ⊆ 2N0 × N0 × Z is defined by

Aφ = {(k, `, n) : k ∈ 2N0, ` ∈ N0, n ∈ Z, ` ≤ k and (2`− k)φ = 2nπ}.

Example 4.5. The Narayana sequence N = {Nn}n≥0 is given by the third-order recurrence
Nn+3 = Nn+2 + Nn, n ≥ 0, with initial values N0 = 0, N1 = N2 = 1. Like in the previous
example, it is easy to verify that the coefficients satisfy assumptions (2.6) and the roots of the
characteristic equation

x3 − x2 − 1 = 0 (4.2)

for the Narayana sequence are given by

α =
1

3

(
1 +

3

√
29

2
+

3

2

√
93 +

3

√
29

2
− 3

2

√
93

)
≈ 1.46557, β = γ = α−1/2eφi,

where

φ = arctan


√

3

(
3

√
29
2 + 3

2

√
93− 3

√
29
2 −

3
2

√
93

)
2− 3

√
29
2 + 3

2

√
93− 3

√
29
2 −

3
2

√
93

+ π.

The root α is the fourth smallest Pisot number, the so-called supergolden ratio (or the
Narayana’s cows constant) - see [15, sequence A092526].
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Since the real root of the characteristic equation for the Narayana sequence is the third
order Pisot number less than 2; the polar structure of the associated Narayana zeta function

ζN (s) :=
∞∑
n=1

N−sn is very similar to the one of the Tribonacci zeta function. Namely, after

a trivial computation which amounts to verification of the inequality 2|Bβ| < |Aα|, we can
apply Corollary 3.2 to determine the residues of ζN (s).

Then, under assumption that the argument of β is not a rational multiple of π, we easily
deduce that ζN (s) possesses poles at negative integers s = −3`, ` ∈ N with residues

Res
s=−3`

ζN (s) =
1

logα

(
3`

2`

)(
2`

`

)
A`|B|2` =

1

logα

(
3`

`, `, `

)
(ABC)`,

where A, B and C can be calculated using (2.4) and Vieta’s formulas for the cubic equation
(4.2). More precisely, we again have the equality ABC = −1/D, where D is the discriminant
of (4.2), equal to −31. Therefore, assuming that the phase φ of the Pisot conjugate β is not
a rational multiple of π, the residue of the Narayana zeta function at the pole s = −3`, ` ∈ N
equals

Res
s=−3`

ζN (s) =
1

logα

(
3`

`, `, `

)
(31)−`.
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