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Abstract. We study the theta function and the Hurwitz-type zeta function associated to
the Lucas sequence U = {Un(P,Q)}n≥0 of the first kind determined by the real numbers P,Q
under certain natural assumptions on P and Q. We deduce an asymptotic expansion of the
theta function θU (t) as t ↓ 0 and use it to obtain a meromorphic continuation of the Hurwitz-

type zeta function ζU (s, z) =
∞∑
n=0

(z + Un)−s to the whole complex s−plane. Moreover, we

identify the residues of ζU (s, z) at all poles in the half-plane <(s) ≤ 0.

1. Introduction

The Lucas sequences {Un(P,Q)}n≥0 and {Vn(P,Q)}n≥0 of the first and the second kind
associated to arbitrary real numbers P,Q are defined for all non-negative integers n by

Un =
an − bn

a− b
and Vn = an + bn, (1.1)

where a and b (a ≥ b) are the roots of the quadratic equation x2 − Px + Q = 0 and by
definition U0 = 0, U1 = 1 and V0 = 2. Those sequences were first studied by E. Lucas in [15],
who considered the special case when P,Q are relatively prime integers.

Some well-known special cases of sequences {Un(P,Q)}n≥0 and {Vn(P,Q)}n≥0 include Fi-
bonacci numbers Fn = Un(1,−1), Lucas numbers Ln = Vn(1,−1), Pell numbers Un(2,−1),
Pell-Lucas numbers Vn(2,−1), Jacobsthal numbers Un(1,−2) and Jacobsthal-Lucas numbers
Vn(1,−2), and they are all indexed in the On-Line Encyclopedia of Integer Sequences [24] as
A000045, A000032, A000129, A002203, A001045 and A014551, respectively. There are many
further generalizations of Lucas sequences; some of them are given in [1, 8, 31], as well as nu-
merous articles studying different properties of those sequences (see e.g. [7, 13, 20, 21, 23, 26]).

Zeta and L−functions in number theory carry important information related to the object
they are associated to. Hence, it is of interest to study zeta-type functions associated to Lucas
sequences. The zeta function ζ{Fn}(s) :=

∑
n≥1 F

−s
n , associated to the Fibonacci sequence was

studied in [2] and [19], where a meromorphic continuation of ζ{Fn}(s) to s ∈ C was deduced.
Moreover, in [19] some interesting algebraicity and transcendence results for special values of
ζ{Fn}(s) were derived, see also [18] for related results. Analytic continuation of the multiple
Fibonacci zeta functions was studied in [22].

The Lucas zeta function

ζ{Un(P,Q)}(s) = ζU (s) :=

∞∑
n=1

1

Un (P,Q)s
, s ∈ C,<(s) > 0, (1.2)

associated to the Lucas sequence U = {Un(P,Q)}n≥0 of the first kind was studied by K. Ka-
mano in [11], who described in detail its polar structure. Kamano also studied the L−function
defined by twisting ζU (s) by a primitive, multiplicative Dirichlet character. Going further,
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Meher and Rout [16] extended results from [11] and proved analytic continuation of the mul-
tiple Lucas zeta function, see also [17] where a twist by additive and Dirichlet characters was
considered.

Hurwitz-type zeta functions, a natural generalization of zeta and L−functions associated to
certain sequences appear in many mathematical and physical disciplines. The Hurwitz-type
zeta function associated to the sequence A = {an}n≥0 of complex numbers is formally defined
for <(s)� 0 by

ζA(s, z) =
∞∑
n=0

1

(z + an)s
,

for all z ∈ C such that z+an /∈ R≤0 for all n ≥ 0 and (z + an)−s is defined using the principal
branch of the logarithm.

When the sequence A is the sequence of eigenvalues of a certain operator, Hurwitz-type
zeta functions appears in the literature under the name ”two parameter spectral function”,
or ”generalized zeta function”, see, e.g. [27] and [5], or [3, Chap. 4] where the study of
Epstein-Hurwitz zeta functions is nicely presented.

A thorough study of Hurwitz-type zeta functions associated to a general sequence A of com-
plex numbers, satisfying certain mild conditions was conducted in [10], where generalizations
of various were derived (e.g. the Lerch formula, the Gauss formula, the Stirling formula and
many others). A more general study is presented in [9], where the sequence A is replaced by
a countable set D, the so-called ”directed divisor”.

When the sequence A is the sequence of zeros of a zeta or L−function, the Hurwitz-type zeta
function appears under the name ”super-zeta” function. Polar structure of such functions can
be described using the approach explained in [28] (see also [4] for a result relating super-zeta
functions to determinants of Laplacians on cofinite Fuchsian groups).

In this paper, we study the Hurwitz-type zeta function associated to the sequence U =
{Un(P,Q)}n≥0 of Lucas numbers of the first kind associated to real parameters P,Q which are
arbitrary, but fixed throughout the paper (and hence, omitted from notation) and which satisfy
the technical assumption (2.1) below. This function is defined for <(s) > 0 and <(z) > 0 by

ζU (s, z) =
∞∑
n=0

1

(z + Un)s
, (1.3)

where we use the principal branch of the logarithm to define (z + Un)−s.
In our main theorem (Theorem 4.1 below) we prove that the Hurwitz-type zeta function

ζU (s, z) admits a meromorphic continuation to the whole complex s−plane for z ∈ C\(−∞, 0],
and we give the complete list of possible poles of this meromorphic function and their cor-
responding residues. It is interesting to notice that for all sequences U = {Un}n≥0, the zeta
function ζU (s, z) possesses poles at non-positive integers and other poles located on certain
vertical lines in the half-plane <(s) ≤ 0.

In order to illustrate our results, we study the Hurwitz-type zeta function associated to the
sequence U = {Un}n≥0, where U0 = 1 and Un =

∑n−1
j=0 a

j , for n ≥ 1 is the partial sum of the

divergent geometric series
∑

n≥0 a
n, a > 1 and prove that the residue of ζU (s, z) at −`, ` ∈ N0

equals 1
log a

(
z + 1

1−a

)`
.

Our second example is devoted to the Hurwitz-type zeta function associated to the Fibonacci
sequence {Fn}n≥0. Let ϕ = (

√
5 + 1)/2 be the golden ratio and ϕ̄ = (1−

√
5)/2 its conjugate.

We prove that the residue of the Hurwitz-type zeta function ζ{Fn}(s, z) at the pole −`, ` ∈ N0
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equals 1/ logϕ times sum of the terms in the trinomial (
√
ϕ/5 +

√
|ϕ̄|/5 + z)` which possess

rational coefficients.
The approach we undertake in the study of ζU (s, z) is different from previous studies [2, 18,

19] on this topic (and which is based on the Taylor series expansion), due to the fact that the
sequence {Un + z}n≥0, for z ∈ C \ (−∞, 0] does not satisfy the Binet-type formula. Namely,
our starting point is the fact that Γ(s)ζU (s, z), for <(s) and <(z) large enough equals the
Laplace-Mellin transform of the corresponding theta function

θU (t) :=
∞∑
n=0

e−Unt, t ∈ R>0. (1.4)

This approach can be traced back to Riemann and is nicely explained in [10]. However, results
of [10] on meromorphic continuation of the Hurwitz-type zeta function ζA(s, z) associated to a
general sequence A of complex numbers can not be applied in our setting, due to the fact that
the Lucas zeta function has infinitely many poles in every strip in the half-plane <(s) < 0 of
width greater than one. Though more general than [10], results of [9] can not be applied for
the same reason.

To overcome the above-mentioned problems, using the Mellin inversion, in Theorem 3.2
below, we derive an asymptotic expansion for the theta function θU (t) as t ↓ 0, up to O(tm), for
an arbitrary positive integer m. Using this expansion, we are able to deduce the meromorphic
continuation and the polar structure of ζU (s, z).

The structure of the paper is the following: In Section 2 we prove certain properties of the
Lucas zeta function, needed to derive an asymptotic expansion for the theta function θU (t) in
Section 3. Section 4 is devoted to description of the polar structure of the function ζU (s, z).
In the last section we derive an explicit evaluation of the polar structure of Hurwitz-type
zeta functions associated to the Fibonacci sequence and to the sequence of partial sums of a
divergent geometric series. We end the paper with concluding remarks, where we discuss the
case when Q = 0 and future projects related to zeta functions of recurrence sequences of the
third order.

2. Properties of the Lucas zeta function

Let P and Q be arbitrary real numbers such that

P > 0, Q 6= 0 and

{
Q ≤ P − 1, P > 2,
Q < P − 1, 0 < P ≤ 2.

(2.1)

In the sequel we will assume that P,Q ∈ R are arbitrary, fixed numbers satisfying (2.1) and we
will omit them from the notation. The following lemma summarizes properties of the sequence
{Un}n≥0.

Lemma 2.1. The Lucas sequence {Un}n≥0 and the corresponding Lucas zeta function ζU
possess the following properties:

(i) a > 1, a > |b| > 0 and Un > 0 for all integers n ≥ 1.
(ii) The infinite series ζU (s) is absolutely convergent for <(s) > 0.

(iii) For every C ∈ R≥0, there exists a positive integer nC such that the inequality Un > C
holds true for all integers n ≥ nC .

Proof. Properties (i) and (ii) follow from [11, Prop. 3]. Part (iii) follows from the fact that
lim

n→+∞
an−bn
a−b = +∞. �
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Under assumptions (2.1) on P,Q, in [11, Thm. 4 on p. 640] it was proved that the
Lucas zeta function ζU (s), associated to the Lucas sequence {Un}n≥0 of the first kind can
be meromorphically continued to the whole s-plane and written as

ζU (s) = Ds/2
∞∑
k=0

(
−s
k

)
(−1)k

Qk

as+2k −Qk
= Ds/2

∞∑
k=0

(
−s
k

)
(−1)k

a−s−kbk

1− a−s−kbk
, (2.2)

where D = P 2− 4Q = (a− b)2. Moreover, it was proved that ζU (s) is holomorphic except for
possible simple poles at

s = sk,n = −2k +
k log |Q|

log a
+

(2n+ lQ,k)πi

log a
, (2.3)

where k ≥ 0 and n are arbitrary integers and lQ,k :=

{
k, Q < 0,
0, Q > 0.

The residue of ζU (s) at s = sk,n is given by

Ress=sk,n (ζU ) = D
sk,n
2

(
−sk,n
k

)
(−1)k

log a
.

If for some k ≥ 1 and n ∈ Z we have −sk,n ∈ {0, 1, . . . , k − 1}, then
(−sk,n

k

)
= 0 and sk,n is

not a pole of ζU (s). A simple computation shows that ζU (s) possesses a simple pole at s = 0
with the Laurent series expansion given by

ζU (s) =
1

s log a
+

1

2

(
logD

log a
− 1

)
+O (s) , as s→ 0. (2.4)

Namely, for k ≥ 1, one has
(
0
k

)
= 0 and for s = 0 we have

(−s
0

)
= 1. Therefore, as s→ 0, the

Laurent series expansion of ζU (s) is the expansion of

Ds/2(as − 1)−1 =
e
s
2
logD

es log a−1
=

1 + s
2 logD +O(s2)

s log a+ s2

2 log a+O(s3)
.

The pole at s = 0 is simple with the residue 1
log a , hence to prove (2.4) it remains to see that

lim
s→0

(
1 + s

2 logD +O(s2)

s log a
(
1 + s

2 log a+O(s2)
) − 1

s log a

)
= lim

s→0

s
2(logD − log a)

s log a
=

1

2

(
logD

log a
− 1

)
.

In the lemma below we summarize the cases at which ζU (s) possesses poles at negative
integers.

Lemma 2.2. With the notation as above, under assumption (2.1), the Lucas zeta function
ζU (s) possesses poles at s = −`, for some ` ∈ N if and only if:

(i) Q = 1 and ` = 2k is an even positive integer;
(ii) Q = −1 and ` = 4k is a positive integer divisible by 4;

(iii) Q > 0, b = a−p/q for a non-negative rational number p/q and

` =

{
k1(1 + p/q) = −sk,0, for some k = qk1 ∈ N, when p 6= 0,
k, k ∈ N, when p = 0;

(iv) Q < 0, b = −a−p/q for a non-negative rational number p/q and

` =

{
2k1(1 + p/q) = −sk,−k/2, for some k = 2qk1 ∈ N, when p 6= 0,
2k, k ∈ N, when p = 0.
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In each of the four cases listed above the constant term the Laurent series expansion of ζU (s)
at s = sk,0 = −` (for Q > 0) or s = sk,−k/2 = −` (for Q < 0) is given by:

CTs=−`ζU (s) = D−`/2
(
`

k

)
(−1)k

(
logD − log a

2 log a
+
H`−k −H`

log a

)
+

+D−`/2
∑̀

j=0,j 6=k

(
`

j

)
(−1)j

a`−jbj

1− a`−jbj
,

(2.5)

where Hn :=
∑n

j=1
1
j denotes the nth harmonic number and H0 := 0.

Proof. Parts (i) and (ii) follow from [11, Prop. 6]. Let us prove (iii). In order that −` is a
pole of ζU (s), there must exist n ∈ Z and k ≥ 0 such that −` = sn,k. For Q > 0 (and hence
b > 0) this is fulfilled if and only if n = 0 and

` = k

(
1− log b

log a

)
.

Therefore, −` is a pole of ζU (s) if and only if log b
log a is a rational number and

k

(
1− log b

log a

)
/∈ {0, 1, . . . , k − 1}.

If b = ar for some positive rational number r (obviously, r < 1, since a > b) then for all positive
integers k such that k(1−r) is a positive integer, this integer belongs to the set {0, 1, . . . , k−1}
and hence −k(1 − r) is not a pole of ζU (s). Therefore, −` is a pole of ζU (s) if and only if

b = a−p/q for some non-negative rational number p/q (we assume p, q to be relatively prime
integers or p = 0). When p = 0, then ` = k, for k ∈ N. When p/q > 0, obviously ` = k(1+p/q)
and this is an integer if and only if k ≡ 0(mod q). This proves part (iii).

The proof of part (iv) is similar. When Q < 0, we have lQ,k = k and hence sk,n can be a
negative integer only if k = 2m is an even positive integer and n = −m. In this case b < 0
and

−s2m,−m = 2m

(
1− log |b|

log a

)
.

reasoning as above completes the proof of (iv).
Now, it is left to prove that the constant term in all situations (i)–(iv) is given by (2.5). We

prove this for Q > 0, b = a−p/q for a rational number p/q ≥ 0 and ` = k(p+ q)/q = −sk,0 for
some k = qk1 ∈ N. For such k and ` we have, as s→ −`:

a−s−kbk

1− a−s−kbk
=

1− (s+ `) log a+O((s+ `)2)

(s+ `) log a
(
1− 1

2(s+ `) log a+O(s+ `)2
) , (2.6)

Ds/2 = D−`/2
(
1 + 1

2(s+ `) logD +O((s+ `)2)
)

(2.7)

and (
−s
k

)
=

Γ(−(s+ `) + `+ 1)

k!Γ(−(s+ `) + `+ 1− k)

=

(
`

k

)(
1 + (s+ `)(ψ(`+ 1− k)− ψ(`+ 1)) +O((s+ `)2)

)
,

(2.8)
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where ψ(x) denotes the digamma function. By letting s→ −` we get

lim
s→−`

(
ζU (s)−D−`/2

(
`

k

)
(−1)k

(s+ `) log a

)
= D−`/2

∑̀
j=0,j 6=k

(
`

j

)
(−1)j

a`−jbj

1− a`−jbj
+

+ lim
s→−`

(
Ds/2

(
−s
k

)
(−1)k

a−s−kbk

1− a−s−kbk
−D−`/2

(
`

k

)
(−1)k

(s+ `) log a

)
.

Therefore, it is left to compute the limit on the right-hand side of the above equation. By
multiplying (2.6), (2.7) and (2.8) we deduce that this limit equals

D−`/2
(
`

k

)
(−1)k

log a

(
logD − log a

2
+ (ψ(`+ 1− k)− ψ(`+ 1))

)
.

Using the functional equation ψ(x + 1) = ψ(x) + 1/x for the digamma function and the fact
that ψ(1) = −γ, where γ is the Euler constant, we complete the proof of (2.5) in case (iii).
The proof in all other cases is similar, so we omit it. �

Example 2.3. The zeta function associated to Jacobstahl numbers Jn := Un(1,−2) is such
that Q < 0, a = 2, b = −1, hence log |b| = 0 and the case (iv) of the above lemma with
p/q = 0 applies to deduce that the Jacobstahl zeta function ζ{Jn}(s) :=

∑∞
n=1 J

−s
n , initially

defined for <(s) > 0 possesses meromorphic continuation to the whole complex plane with
poles at points s = −k + (2n + k)πi/ log 2, k ≥ 0, n ∈ Z. Specially, this function possesses
poles at all non-positive even integers −2`, ` ∈ N0.

3. The theta function associated to the Lucas sequence

In this section we derive properties of the theta function θU (t) associated to the Lucas
sequence of the first kind, and defined by (1.4). The following lemma describes the asymptotic
behavior of θU (t) for large and small values of t and shows that the series (1.4) converges
uniformly in t on every set [t0,∞), for t0 > 0.

Lemma 3.1. The theta function θU (t) possesses the following properties:

(i) For given numbers C, t0 ∈ R≥0, there exist N ∈ N and K ∈ R≥0 such that

∣∣∣∣ ∞∑
n=N

e−Unt
∣∣∣∣ ≤

Ke−Ct for t ≥ t0 .

(ii) For δ ∈ (0, 1), there exist α,C ∈ R≥0 such that the inequality

∣∣∣∣ ∞∑
n=N

e−Unt
∣∣∣∣ ≤ C

tα holds

true for all N ∈ N and t ∈ (0, δ].

Proof. Proof is similar to proof of [10, Thm. 1.12], so we give only a sketch here.

Part (i) follows from Lemma 2.1 by taking N = nC and K =
∞∑

n=nC

e−(Un−C)t0 .

Part (ii) follows from Lemma 2.1 combined with the inequality xβe−x ≤ c which holds true
for any x ≥ 0, β > 0, with a constant c depending only upon β. �

In view of Lemma 2.2, for an arbitrary, fixed k ∈ N0 and a, b as above, we define the set
Aa,b(k) by setting

Aa,b(k) =


Z, if log |b|

log a k /∈ Z≤0 or (Q = ab < 0 and k is odd) ;

Z \ {0}, if log |b|
log a k ∈ Z≤0 and Q = ab > 0;

Z \ {−k/2}, if log |b|
log a k ∈ Z≤0 and Q = ab < 0 and k is even.
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For a positive integer m we also define the subset B(m, a, b) of the set {1, 2, . . . , 2m} to be the
set of numbers ` ∈ {1, 2, . . . , 2m} for which there exists j ∈ N such that

` =

 j
(

1− log b
log a

)
, if log b

log aj ∈ Z≤0 and Q = ab > 0;

j
(

1− log |b|
log a

)
, if log |b|

log a j ∈ Z≤0 and Q = ab < 0 and j is even.

If the value of j described above does not exist, then, by definition B(m, a, b) = ∅. With this
notation, we can state and prove our first main result in which we deduce the asymptotic
expansion of θU (t) as t ↓ 0.

Theorem 3.2. Let m ≥ 1 be an integer. When t ↓ 0, we have the following asymptotic
expansion for θU (t)

θU (t) =
logD + log a− 2γ

2 log a
− log t

log a
+

M∑
k=0

ca,b (k, t) t
k
(
1− log |b|

log a

)
−
lQ,kπi

log a +

+
∑

`∈B(m,a,b)

(da,b (`)− d̃a,b (`) log t)t` +
∑

`∈{1,...,2m}\B(m,a,b)

(−1)`

`!
ζU (−`)t` +O

(
t2m+c0

)
,

(3.1)

where M = b2m/
(

1− log |b|
log a

)
c, c0 > 0 is an absolute constant which depends only upon the

zeta function,

ca,b (k, t) =
D

k
2

(
log |b|
log a

−1
)
+
lQ,kπi

2 log a

k! log a

∑
n∈Aa,b(k)

D
nπi
log aΓ

(
log |b|
log a

k +
(2n+ lQ,k)πi

log a

)
t
− 2nπi

log a , (3.2)

and da,b (`), d̃a,b (`), for ` = k
(

1− log |b|
log a

)
∈ B(m, a, b) are given by

da,b (`) =
(−1)`

`!D`/2

[
(−1)k

2 log a

(
`

k

)
(logD − log a+ 2(H`−k − γ)) +

+
∑

j∈{0,...,`}\{k}

(
`

j

)
(−1)ja`−jbj

1− a`−jbj

 (3.3)

and

d̃a,b(`) =
(−1)`+k

`!
D−`/2

1

log a

(
`

k

)
. (3.4)

When B(m, a, b) = ∅, the sum over ` ∈ B(m, a, b) on the right hand side of (3.1) is identically
zero.

Moreover, the series (3.2) is absolutely convergent and uniformly bounded by a constant
independent of t, as t ↓ 0.

Proof. The function ζU (s) is holomorphic and absolutely convergent for <(s) > 0, hence the
Mellin inversion formula applied to ζU (s) Γ (s) yields the representation

θU (t)− 1 =
1

2πi

c+i∞∫
c−i∞

ζU (s) Γ (s) t−sds =
1

2πi
lim
T→∞

c+iT∫
c−iT

ζU (s) Γ (s) t−sds,

valid for some c ∈ R>0.
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The gamma function Γ (s) has simple poles at the negative integers and zero. The Laurent
series expansion of Γ (s) at s = −` (` ∈ N0) is given by

Γ(s) =
(−1)`

`!

(
1

s+ `
+H` − γ

)
+O(s+ `), as s+ `→ 0. (3.5)

Therefore, the function ζU (s) Γ (s) t−s has a pole of order 2 at s = 0, poles of order at most 2

at negative integers and at most simple poles at s = sk,n defined by (2.3), when k log|Q|
log a /∈ Z.

Let the constant c0 ∈ (0, 1) be chosen so that −2m − c0 does not coincide with poles of
ζU (s) Γ (s) t−s for every m ∈ N. Let T > 0 be such that the function ζU (s) Γ (s) t−s is analytic
on the boundary of the rectangle R(c,m, c0, T ) with vertices c ± iT and −2m − c0 ± iT and
meromorphic inside it. The Residue Theorem gives us

c+iT∫
c−iT

ζU (s) Γ (s) t−sds = 2πi
∑

s∈R(c,m,c0,T )

Res
(
ζU (s) Γ (s) t−s

)
−
−2m−c0+iT∫
c+iT

ζU (s) Γ (s) t−sds

−
c−iT∫

−2m−c0−iT

ζU (s) Γ (s) t−sds+

−2m−c0+iT∫
−2m−c0−iT

ζU (s) Γ (s) t−sds .

(3.6)

For large real numbers x, y, from [6, formula 8.328 on p. 904] we have the estimate

|Γ (x+ iy)| ∼
√

2πe−
π
2
|y| |y|−

1
2
+x . (3.7)

This, combined with the fact that |b|/a < 1 yields that for any τ ∈ R one has

|ζU (−2m− c0 + iτ)| ≤ D−
2m+c0

2

∞∑
k=0

|Γ(2m+ c0 + 1− iτ)|
k!|Γ(2m+ c0 + 1− k − iτ)|

a2m+c0(|b|/a)k

|1− a2m+c0−iτ (b/a)k|

�
(

a√
D

)2m+c0 ∞∑
k=0

(|τ ||b|/a)k

k!
�
(

a√
D

)2m+c0

e|τ |.

Now, we easily deduce that the two integrals on the right-hand side of (3.6) taken over the
horizontal lines tend to zero when T →∞ and that the integral along the vertical line, when
t ↓ 0 can be estimated as∣∣∣∣∣∣

−2m−c0+iT∫
−2m−c0−iT

ζU (s) Γ (s) t−sds

∣∣∣∣∣∣� t2m+c0

∞∫
1

e(1−π/2)τdτ = O(t2m+c0),

where the bound is uniform in T . Therefore, letting T →∞ in (3.6) yields that

θU (t) = 1 + lim
T→∞

∑
s∈R(c,m,c0,T )

Res
(
ζU (s) Γ (s) t−s

)
+O(t2m+c0), as t ↓ 0, (3.8)

under assumption that the limit of the sum over residues is finite. This limit equals the sum
over residues of the function ζU (s) Γ (s) t−s in the strip −2m − c0 ≤ <(s) ≤ c. Now, we will
compute the sum of residues of this function at its poles in the strip −2m− c0 ≤ <(s) ≤ c and
prove it is finite.

For k ≥ 0 and n ∈ Z, the pole s = sk,n = −k
(

1− log |b|
log a

)
+

(2n+lQ,k)πi
log a of ζU (s) belongs to

the strip −2m−c0 ≤ <(s) ≤ c if and only if k ∈ {0, 1, . . . ,M}, where M = b2m/
(

1− log |b|
log a

)
c.
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Therefore, all poles w of ζU (s) Γ (s) t−s in the strip −2m − c0 ≤ <(s) ≤ c are of the form
w = sn,k, for k ∈ {0, 1, . . . ,M} and n ∈ Z and of the form w = −j, j ∈ {0, . . . , 2m},
where poles w = sn,k /∈ Z<0 and w = −j /∈ B(m, a, b) are simple, while poles w = 0 and
w = −` ∈ B(m, a, b) are double poles. Let us compute residues at all those poles. First, we
treat simple poles (there are infinitely many such poles in our strip).

If k ∈ {0, 1, . . . ,M} and n ∈ Z are such that sk,n /∈ {−2m,−2m + 1, . . . ,−1}, then the
function ζU (s) Γ (s) t−s has a simple pole at s = sk,n with the residue

Res
s=sk,n

(
ζU (s) Γ (s) t−s

)
= D

−k+k log|Q|
2 log a

+
(2n+lQ,k)πi

2 log a

(
−2k + k log|Q|

log a +
(2n+lQ,k)πi

log a

k

)
·

·(−1)k

log a
Γ

(
−2k +

k log |Q|
log a

+
(2n+ lQ,k)πi

log a

)
t
2k− k log|Q|

log a
−(2n+lQ,k)πi

log a

= D
k
2

(
log |b|
log a

−1
)
+

(2n+lQ,k)πi
2 log a

1

k! log a
Γ

(
log |b|
log a

k +
(2n+ lQ,k)πi

log a

)
t
k
(
1− log |b|

log a

)
−(2n+lQ,k)πi

log a .

The asymptotic relation (3.7) yields the following estimate for any integer k ≥ 0:∑
n∈Aa,b(k)

∣∣∣∣ Res
s=sk,n

(
ζU (s) Γ (s) t−s

)∣∣∣∣� √2π

k!
(log a)

− 1
2
− log |b|

log a
k
D

k
2

(
log |b|
log a

−1
)
t
k
(
1− log |b|

log a

)
·

·
∑

n∈Aa,b(k)\{−
lQ,k
2 }

e
− π2

2 log a |2n+lQ,k| |2n+ lQ,k|−
1
2
+

log |b|
log a

k
,

which proves that the series
∑

n∈Aa,b(k)
Res
s=sk,n

(ζU (s) Γ (s) t−s) is absolutely convergent.

For a fixed k ∈ {0, 1, . . . ,M} and all integers n such that sn,k /∈ Z<0 we can write∑
n∈Aa,b(k)

Res
s=sk,n

(
ζU (s) Γ (s) t−s

)
= ca,b (k, t) t

k
(
1− log |b|

log a

)
−
lQ,kπi

log a ,

where ca,b (k, t) is defined by (3.2).
If−s = ` /∈ B(m, a, b) for an integer ` ∈ {1, . . . , 2m}, then−` is a simple pole of ζU (s)Γ(s)t−s

with the residue (−1)`
`! ζU (−`)t`, hence the contribution of all such poles to the sum of all residues

in the strip −2m− c0 ≤ <(s) ≤ c is given by∑
`∈{1,...,2m}\B(m,a,b)

(−1)`

`!
ζU (−`)t`. (3.9)

It is left to evaluate contribution from double poles. Let us start with the double pole at
0. Multiplying the Laurent series expansions (2.4) and (3.5) (for ` = 0) with the Taylor series
expansion t−s = e−s log t = 1− s log t+O

(
s2
)
, we get

Res
s=0

(
ζU (s) Γ (s) t−s

)
=

logD − log a− 2γ

2 log a
− log t

log a
.

Now, we consider the case when B(m, a, b) 6= ∅, i.e. when s = sk,n = −`, for ` ∈ N. In this
case, −` is a double pole of the function ζU (s) Γ (s) t−s. In this case, we write ζU (s) for s close
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to −` as

ζU (s) = D−`/2
(
`

k

)
(−1)k

log a

(
1

s+ `
+

(
logD − log a

2
+H`−k −H`

))
+

+D−`/2
∑̀

j=0,j 6=k

(
`

j

)
(−1)j

a`−jbj

1− a`−jbj
+O (s+ `) ,

(3.10)

and use the Taylor series expansion t−s = t`(1− (s+ `) log t+ O((s+ `)2)) for s close to −`,
and the Laurent series expansion (3.5) to deduce that

Res
s=−`

(
ζU (s) Γ(s)t−s

)
=

(−1)`

`!
D−

`
2

(−1)k

log a

(
`

k

)
t`
(

logD − log a

2
+H`−k − γ − log t

)
+

+
(−1)`

`!
D−

`
2 t`

∑̀
j=0,j 6=k

(
`

j

)
(−1)j

a`−jbj

1− a`−jbj
= (da,b (`)− d̃a,b (`) log t)t`,

where da,b(`) and d̃a,b(`) are given by (3.3) and (3.4), respectively.
Now, we see that the sum of all residues of the function ζU (s) Γ (s) t−s inside the strip

−2m− c0 ≤ <(s) ≤ c equals

∑
all poles s,

−2m−c0≤<(s)≤c

Res
(
ζU (s) Γ (s) t−s

)
=

logD − log a− 2γ

2 log a
+

M∑
k=0

ca,b (k, t) t
k
(
1− log |b|

log a

)
−
lQ,kπi

log a +

+
∑

`∈B(m,a,b)

(da,b (`)− d̃a,b (`) log t)t` − log t

log a
+

∑
`∈{1,...,2m}\B(m,a,b)

(−1)`

`!
ζU (−`)t`,

where ca,b (k, t) is defined by (3.2) and da,b (`) and d̃a,b (`) are defined by (3.3) and (3.4),
respectively. Combining this with (3.8) completes the proof. �

4. The Hurwitz-type zeta function associated to the Lucas sequence

In this section we will prove that the Hurwitz-type zeta function associated to the Lucas
sequence {Un}n≥0, defined for <(s) > 0 and <(z) > 0 by (1.3), for all z ∈ C \ (−∞, 0] can
be meromorphically continued to the whole complex s−plane and we will identify its polar
structure.

The starting point of our investigation is the fact that ζU (s, z), for <(s) > 0 and <(z) > 0,
can be expressed as the Laplace-Mellin transform of the theta function θU (t):

ζU (s, z) =
1

Γ (s)

∫ ∞
0

θU (t) e−ztts
dt

t
. (4.1)

We define the subset B(a, b) of positive integers by

B(a, b) =
⋃
m∈N

B(m, a, b).

The main result of the paper is the following theorem.

Theorem 4.1. The Hurwitz-type zeta function ζU (s, z), for z ∈ C\ (−∞, 0], can be continued
to a meromorphic function on the complex s−plane, with simple poles at s = −` and s`,k,n =

364 VOLUME 60, NUMBER 5



ON THE HURWITZ-TYPE ZETA FUNCTION ASSOCIATED TO THE LUCAS SEQUENCE

−` − k
(

1− log |b|
log a

)
+

(2n+lQ,k)πi
log a , for `, k ∈ N0, n ∈ Aa,b(k), with the corresponding residues

given by

z`

log a
+

∑
j∈B(a,b), j≤`

d̃a,b (j) (−`)j z
`−j

and

Ca,b (k)D
nπi
log a

(−z)`

`!

`+k∏
j=1

(
k

log |b|
log a

+
(2n+ lQ,k)πi

log a
− j
)
, (4.2)

respectively, where

Ca,b(k) =
D

k
2

(
log |b|
log a

−1
)
+
lQ,kπi

2 log a

k! log a
, (4.3)

with the convention that if s`1,k1,n1 = s`2,k2,n2 for different triples (`m, km, nm), m = 1, 2, the
corresponding residues are added.

Proof. We start with continuation of ζU (s, z) in z−variable, for a fixed s with <(s) > 0. For an
arbitrary m ∈ N, it suffices to prove meromorphic continuation to the half plane <(z) > −m
with the cut along the negative real axis.

By Lemma 3.1 (i) there exist N ∈ N and K > 0 such that∣∣∣∣∣
∞∑
n=N

e−Unt

∣∣∣∣∣ ≤ Ke−(m+1)t. (4.4)

For such N , the Hurwitz-type zeta function can be written as

ζU (s, z) =
1

Γ (s)

[∫ ∞
0

e−ztts
dt

t
+
N−1∑
n=1

∫ ∞
0

e−Unte−ztts
dt

t
+

∫ ∞
0

∞∑
n=N

e−Unte−ztts
dt

t

]

=
1

zs
+

N−1∑
n=1

1

(z + Un)s
+

1

Γ (s)

∫ ∞
0

∞∑
n=N

e−Unte−ztts
dt

t
.

The first two summands are meromorphic functions of z ∈ C \ (−∞, 0]. Let us consider the
third summand. The bound (4.4) yields that the integral converges uniformly in z on every
compact subset of the half-plane <(z) > −m, and hence represents a holomorphic function
in z in this half-plane. This completes the proof of meromorphic continuation of ζU (s, z) in
z−variable, for a fixed s with <(s) > 0.

Now we turn our attention to meromorphic continuation of Hurwitz-type zeta function
ζU (s, z) in s−variable. We start with the representation

ζU (s, z) =
1

Γ(s)

∫ 1

0
(θU (t)− αa,b,m (t)) e−ztts

dt

t

+
1

Γ(s)

∫ ∞
1

(θU (t)− αa,b,m (t)) e−ztts
dt

t
+

1

Γ(s)

∫ ∞
0

αa,b,m (t) e−ztts
dt

t
,

(4.5)
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where we put

αa,b,m (t) =
logD + log a− 2γ

2 log a
− log t

log a
+

M∑
k=0

ca,b (k, t) t
k
(
1− log |b|

log a

)
−
lQ,k
log a

πi
+

+

2m∑
`=1

ea,b (`) t` −
∑

`∈B(m,a,b)

d̃a,b (`) t` log t,

where

ea,b(`) =

{
da,b(`), if ` ∈ B(m, a, b);
(−1)`
`! ζU (−`), if ` ∈ {1, . . . , 2m} \B(m, a, b).

Equation (3.1) yields the representation

θU (t) = αa,b,m (t) +O
(
t2m+c0

)
,

hence, the first integral in (4.5) is holomorphic for <(s) > − (2m+ c0).
The second integral on the right-hand side of (4.5) is holomorphic for <(z) > 0 and all

s ∈ C. Its continuation to the cut z−plane is done in the same way as above, hence, we may
consider it to be holomorphic in the whole s−plane, for z ∈ C \ (−∞, 0].

The third integral on the right-hand side of (4.5) can be written as

1

Γ(s)

∫ +∞

0
αa,b,m (t) e−ztts

dt

t
:= I1 − I2 + I3 + I4 − I5,

where

I1 =
logD + log a− 2γ

2 log aΓ(s)

∫ +∞

0
e−ztts−1dt =

logD + log a− 2γ

2 log a
· 1

zs
;

I2 =
1

log aΓ(s)

∫ +∞

0
e−ztts−1 log tdt =

1

log a

ψ (s)− log z

zs
;

I3 =
1

Γ(s)

M∑
k=0

∫ +∞

0
ca,b (k, t) t

k
(
1− log |b|

log a

)
−
lQ,k
log a

πi
e−ztts−1dt;

I4 =
1

Γ(s)

2m∑
`=1

ea,b (`)

∫ +∞

0
e−ztts+`−1dt =

2m∑
`=1

ea,b (`)
(s)`
zs+`

;

I5 =
1

Γ(s)

∑
`∈B(m,a,b)

d̃a,b (`)

∫ +∞

0
e−ztts+`−1 log tdt

=
∑

`∈B(m,a,b)

d̃a,b (`)
(s)` (ψ (s+ `)− log z)

zs+`
.

Integrals I1, I2, I4 and I5 were deduced using [6, formulae 3.381.4 on p. 346 and 4.352.1 on p.
573], where (s)` is the Pochhammer symbol.

Integrals I1 and I4 are obviously holomorphic functions of s. It is known that digamma
function ψ (s) is meromorphic with simple poles at s = −`, ` ∈ N0 and corresponding residues
−1 (e.g. see [25, p. 24]). Therefore, integral I2 is meromorphic in s with simple poles at
zero and negative integers, and integral I5 is meromorphic in s, with simple poles at negative
integers j such that j ≤ −`, for ` ∈ B(m, a, b).
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It is left to evaluate I3 above, prove that it is a meromorphic function in s and deduce its
poles. Recall that

ca,b (k, t) = Ca,b(k)
∑

n∈Aa,b(k)

D
nπi
log aΓ

(
log |b|
log a

k +
(2n+ lQ,k)πi

log a

)
t
− 2nπi

log a ,

where Ca,b(k) is defined by (4.3).
Therefore,∫ +∞

0
ca,b (k, t) t

k
(
1− log |b|

log a

)
−
lQ,kπi

log a e−ztts−1dt

= Ca,b(k)
∑

n∈Aa,b(k)

D
nπi
log aΓ

(
log |b|
log a

k +
(2n+ lQ,k)πi

log a

)∫ +∞

0
t
k
(
1− log |b|

log a

)
−

(2n+lQ,k)πi

log a
+s−1

e−ztdt,

where interchanging the sum and the integral in the equation above is justified for <(z) > 0
by the bound∑

n∈Aa,b(k)

e
− π2

2 log a |2n+lQ,k| |2n+ lQ,k|−
1
2
+

log |b|
log a

k
∫ +∞

0
t
k
(
1− log |b|

log a

)
+<(s)−1

e−<(z)tdt

≤
∑

n∈Aa,b(k)

e
− π2

2 log a |2n+lQ,k| |2n+ lQ,k|−
1
2
+

log |b|
log a

k
Γ
(
k
(

1− log |b|
log a

)
+ <(s)

)
(<(z))

k
(
1− log |b|

log a

)
+<(s)

,

and the fact that each term on the right-hand side of the above display decays exponentially.
This proves that

I3 =
1

Γ(s)

M∑
k=0

Ca,b(k)
∑

n∈Aa,b(k)

D
nπi
log aΓ

(
log |b|
log a

k +
(2n+ lQ,k)πi

log a

)
·

·
Γ
(
k
(

1− log |b|
log a

)
− (2n+lQ,k)πi

log a + s
)

z
k
(
1− log |b|

log a

)
−

(2n+lQ,k)πi

log a
+s

.

Therefore, I3 is meromorphic, with simple poles at

s`,k,n = −`− k
(

1− log |b|
log a

)
+

(2n+ lQ,k)πi

log a
, `, k ∈ N0, n ∈ Aa,b(k). (4.6)

This proves meromorphic continuation of the third term on the right-hand side of (4.5) to all
z in the cut plane C \ (−∞, 0] and all s with <(s) > −m.

Since m ∈ N was arbitrarily chosen, the above analysis yields that ζU (s, z) is meromorphic
in s ∈ C, and holomorphic in z ∈ C \ (−∞, 0], with simple poles at non-positive integers and
at s`,k,n given by (4.6). A simple computation shows that

Res
s = −`

ζU (s, z) =
z`

log a
+

∑
j∈B(a,b), j≤`

d̃a,b (j) (−`)j z
`−j , ` ∈ N0,

Res
s = s`,k,n

ζU (s, z) = Ca,b (k)D
nπi
log a

(−z)`

`!

`+k∏
j=1

(
k

log |b|
log a

+
(2n+ lQ,k)πi

log a
− j
)
,

`, k ∈ N0, n ∈ Aa,b(k).

The proof is complete. �
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5. Examples and concluding remarks

In this section we present two interesting examples and give remarks on zeta functions
associated to order one and order three recurrence sequences. In the first example we consider
the Hurwitz-type zeta function associated to the Lucas sequence {Un}n≥0, where Un, for n ≥ 1
is the sum of the first n terms in the divergent geometric series

∑
k≥0 a

k, a > 1. In the second
example we take Un to be the Fibonacci sequence.

Then, we will discuss the Hurwitz-type zeta function associated to the divergent geometric
sequence, which arises in the situation when Q = 0 (and a > 1). We will end the paper
with a remark on a follow-up of this paper, related to zeta functions associated to recurrence
sequences of order three.

5.1. Examples.

Example 5.1. Let us consider the Lucas sequence {Un}n≥0 defined for a > 1 by U0 = 1,
U1 = 1 and Un+1 = (a+ 1)Un − aUn−1, for n ≥ 2. In the notation of Sections 1 and 2 above,

this means that P = a+ 1, Q = a, hence b = 1, and Un can be written as Un =
∑n−1

j=0 a
j , for

n ≥ 1. Then, by Theorem 4.1 the Hurwitz-type zeta function

ζU (s, z) =
1

(z + 1)s
+
∞∑
n=1

1

(z + (1 + . . .+ an−1))s
, (5.1)

initially defined for <(s) > 0 possesses, for all z ∈ C \ (−∞, 0] a meromorphic continuation to
the complex s−plane, with simple poles at all non-positive integers s = −`, ` ∈ N0, and at
numbers sm,n = −m+ 2πin

log a , m ∈ N0, n ∈ Z \ {0}.
First, we compute residues at s = −`, ` ∈ N0. Since b = 1, the set B(a, b) = B(a, 1) equals

N; moreover, d̃a,1(j) = 1
j! log aD

−j/2 = 1
j! log a(a− 1)−j . Now, we may conclude that

Res
s=−`

ζU (s, z) =
1

log a

z` +
∑̀
j=1

(−`)j
j!

(a− 1)−jz`−j


=

1

log a

∑̀
j=0

(
`

j

)(
1

1− a

)j
z`−j =

1

log a

(
z +

1

1− a

)`
.

We find it amusing that the ”sum” of the divergent geometric series
∑∞

n=0 a
n appears in the

residue, as if we took the limit as n → ∞ in the expression for the nth term of the series
defining ζU (s, z) at s = −`.

Now, we prove that the residue of the function (5.1) at the pole sm,n = −m+ 2πin
log a , for some

fixed m ∈ N0, and n ∈ Z \ {0} is given by

Res
s = sm,n

ζU (s, z) =
(a− 1)

2nπi
log a

log a

(
z +

1

1− a

)m 1

m!

m∏
j=1

(
j − 2nπi

log a

)
. (5.2)

We start with the observation that sm,n = s`,k,n, where s`,k,n is given by formula (4.6) if and
only if m = `+ k and n ∈ Z \ {0}. Therefore,

Res
s = sm,n

ζU (s, z) =
∑
`,k∈N0
`+k=m

Res
s = s`,k,n

ζU (s, z) .
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Since D = (a− 1)2, by letting k = m− ` in (4.2) and (4.3) we get

Res
s = sm,n

ζU (s, z) =
(a− 1)

2nπi
log a

log a

1

m!

m∏
j=1

(
2nπi

log a
− j
) m∑
`=0

m!

`!(m− `)!
(a− 1)−(m−`)(−z)`,

hence

Res
s = sm,n

ζU (s, z) =
(a− 1)

2nπi
log a

log a

1

m!

m∏
j=1

(
2nπi

log a
− j
)

(−z − 1

1− a
)m,

which proves (5.2).

Example 5.2. Let us investigate the case when Un = Fn, where {Fn}n≥0 is the Fibonacci

sequence. Then a =
√
5+1
2 = ϕ, b = 1−

√
5

2 = ϕ̄. By Theorem 4.1, the Hurwitz-type zeta
function

ζF (s, z) =

∞∑
n=0

1

(z + Fn)s
, (5.3)

initially defined for <(s) > 0 possesses, for all z ∈ C \ (−∞, 0] a meromorphic continuation to
the complex s−plane, with simple poles at all non-positive integers s = −`, ` ∈ N0, and at

numbers s`,k,n = −` − 2k + (2n+k)πi
log a , ` , k ∈ N0, with n ∈ Z for odd k and n ∈ Z \ {−k

2}, for

even k.
Let us compute the residues at s = −`, ` ∈ N0. Since log|b|

log a = −1, we have B(a, b) = 4N;

moreover, d̃a,b(j) = (−1)
j
2

j! log a5−
j
2

( j
j
2

)
. Now, we may conclude that

Res
s=−`

ζF (s, z) =
1

log a

b `4c∑
j=0

(
4j

2j

)(
`

4j

)
5−2jz`−4j =

1

log a

b `4c∑
j=0

(
`

2j, 2j

)
5−2jz`−4j , (5.4)

where
(

`
2j,2j

)
denotes the multinomial coefficient `!/((2j)!(2j)!(`− 2j)!).

We find it interesting to notice that the sum appearing on the right-hand side of (5.4) equals

the sum of the terms in the trinomial (
√
ϕ/5+

√
|ϕ̄|/5+z)` which possess rational coefficients.

5.2. Concluding remarks.

Remark 5.3. When Q = 0, then the sequence associated to (P, 0) is of order one and reduces
to the geometric sequence Un := an, n ≥ 0. As above, we assume that a > 1. The zeta
function associated to the sequence U = {an}n≥0 is the sum of the geometric series, i.e.

ζU (s) =

∞∑
n=0

1

ans
=

1

1− a−s
, for <(s) > 0.

The right-hand side of the above equation obviously provides meromorphic continuation of
ζU (s) to the whole complex plane with simple poles at numbers s = 2kπi

log a , k ∈ Z.

The Hurwitz-type zeta function is defined by

ζU (s, z) =

∞∑
n=0

1

(z + an)s
, <(s) > 0. (5.5)
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Reasoning analogously as in Theorem 3.2 above, we easily deduce the following expansion of
the theta function θU (t) :=

∑
n≥0 exp(−ant), as t ↓ 0:

θU (t) =
log a− 2γ

2 log a
− log t

log a
+

2

log a
<

( ∞∑
k=1

Γ

(
2kπi

log a

)
t
− 2kπi

log a

)
+O(tm),

for any m ≥ 1, where the implied constant is uniform in t. Repeating the steps in the proof of
Theorem 4.1, we deduce that the Hurwitz-type zeta function (5.5), for z ∈ C\(−∞, 0] possesses
meromorphic continuation to the whole complex s−plane with simple poles at s = −` and
s = −`+ 2kπi

log a , ` ∈ N0, k ∈ Z \ {0} and corresponding residues

Res
s = −`

ζU (s, z) =
z`

log a
and Res

s = 2kπi
log a − `

ζU (s, z) =
(−z)`

`! log a

∏̀
j=1

(
2kπi

log a
− j
)
.

The method developed in this paper to deduce meromorphic continuation of the Hurwitz-
type zeta function associated to the sequence {Un}n≥0 which satisfies the recurrence relation
of the second order can be adopted to more general recurrence sequences. For example, when
the sequence is given by the recurrence relation of order three, with characteristic polynomial
having three distinct roots, elements of the sequence can be represented in terms of the Binet
formula and the corresponding zeta function can be meromorphically continued using the Tay-
lor series expansion. An example of such sequence is the Tribonacci sequence; some properties
of the associated zeta function were studied in [14], but mainly for s = 1. See also [12, 29, 30]
for some properties of sums of reciprocals of higher order recurrences.

In the follow up paper we plan to investigate zeta functions and the Hurwitz-type zeta
functions associated to the sequences satisfying higher order difference equations.
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