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Abstract. This present work introduces a new triangular array modified from the Hosoya
triangle and Pascal’s triangle and explores some properties. The sum of all elements in each
row in the form of a Fibonacci number is derived from a recursion of row sum and the
definition of the Fibonacci sequence. An entry expression is formulated by a combinatorial
approach using the grid walk problem.

1. Introduction

The Fibonacci sequence {fn} is defined by the recursive relation fn = fn−1 + fn−2 where
f0 = f1 = 1. The Hosoya triangle, first introduced by Haruo Hosoya [2], was defined as a set
containing products of two Fibonacci numbers H(m,n) = fm−nfn for all m ≥ n ≥ 0:

R0 : 1
R1 : 1 1
R2 : 2 1 2
R3 : 3 2 2 3
R4 : 5 3 4 3 5
R5 : 8 5 6 6 5 8
R6 : 13 8 10 9 10 8 13
R7 : 21 13 16 15 15 16 13 21
R8 : 34 21 26 24 25 24 26 21 34

...

Figure 1: The Hosoya triangle.

Pascal’s triangle is a triangular array with 1’s on the boundary and each of the remaining is
the sum of the nearest two numbers in the row above. Combinatorially, each entry represents

a binomial coefficient

(
n

r

)
=

n!

(n− r)!r!
:

R0 : 1
R1 : 1 1
R2 : 1 2 1
R3 : 1 3 3 1
R4 : 1 4 6 4 1
R5 : 1 5 10 10 5 1
R6 : 1 6 15 20 15 6 1
R7 : 1 7 21 35 35 21 7 1
R8 : 1 8 28 56 70 56 28 8 1

...

Figure 2: Pascal’s triangle.
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A generalization of Pascal’s triangle can be constructed by replacing each side of the triangle
with any sequences an and bn where a0 = b0. For m,n ≥ 0, we define

P (m,n) =


am, if n = 0

bn, if m = 0

P (m,n− 1) + P (m− 1, n), otherwise.

(1.1)

In the original Pascal’s triangle where an and bn are sequences of 1, P (m,n) =

(
m + n

n

)
.

R0 : P (0, 0)
R1 : P (1, 0) P (0, 1)
R2 : P (2, 0) P (1, 1) P (0, 2)
R3 : P (3, 0) P (2, 1) P (1, 2) P (0, 3)
R4 : P (4, 0) P (3, 1) P (2, 2) P (1, 3) P (0, 4)
R5 : P (5, 0) P (4, 1) P (3, 2) P (2, 3) P (1, 4) P (0, 5)

...

Figure 3: The generalized Pascal’s triangle with sequences an and bn boundary.

Inspired by the Hosoya triangle and Pascal’s triangle, we introduce the Fibonacci-Pascal
triangle, which refers to a special case of the generalized Pascal’s triangle where the sequences
an = bn = fn:

R0 : 1
R1 : 1 1
R2 : 2 2 2
R3 : 3 4 4 3
R4 : 5 7 8 7 5
R5 : 8 12 15 15 12 8
R6 : 13 20 27 30 27 20 13
R7 : 21 33 47 57 57 47 33 21
R8 : 34 54 80 104 114 104 80 54 34

...

Figure 4: The Fibonacci-Pascal triangle.

For m ≥ n ≥ 0,

F (m,n) =


fn, if m = 0

fm, if n = 0

F (m,n− 1) + F (m− 1, n), otherwise.

(1.2)

Note that the notation F (m,n) is equivalent to P (m,n) in (1.1) where am = fm and bn = fn.
Equivalently, if we set F (m,n) = R(m + n, n), then for m ≥ n ≥ 0, we defined element n of
row m in the Fibonacci-Pascal triangle by

R(m,n) =

{
fm, if n = 0,m

R(m− 1, n− 1) + R(m− 1, n), otherwise.
(1.3)

Throughout this paper, we aim to determine the row sum of the Fibonacci-Pascal triangle
using definitions of this triangular array and the Fibonacci sequence. The entry expression
generated from the idea of transferring values on the boundary of the triangle to each entry
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is proven by the aid of geometric identities found in the generalized Pascal’s triangle. The
solution is also provided with the hypergeometric function.

2. Row Sum

Lemma 2.1. Given SRN
=

N∑
i=0

R(N, i) the sum of all elements in row RN for all N ≥ 2,

SRN
= 2(SRN−1

+ fN−2). (2.1)

Proof. Consider the equation

SRN
=

N∑
i=0

R(N, i) = R(N, 0) + R(N,N) +
N−1∑
i=1

R(N, i). (2.2)

By the definition (1.3),

N−1∑
i=1

R(N, i) = R(N − 1, 0) + R(N − 1, N − 1) + 2
N−2∑
i=1

R(N − 1, i). (2.3)

Since R(N, 0) = fN = R(N,N),

R(N, 0) = R(N − 1, 0) + R(N − 2, 0) = R(N − 1, 0) + fN−2 (2.4)

R(N,N) = R(N − 1, N − 1) + R(N − 2, N − 2) = R(N − 1, N − 1) + fN−2.

Using (2.3) and (2.4), we obtain

SRN
= R(N, 0) + R(N,N) +

N−1∑
i=1

R(N, i) (2.5)

= 2fN−2 + 2

[
R(N − 1, 0) + R(N − 1, N − 1) +

N−2∑
i=1

R(N − 1, i)

]

= 2fN−2 + 2

N−1∑
i=0

R(N − 1, i)

= 2(SRN−1
+ fN−2).

�

Figure 5: Visual approach to finding SR6 .
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Theorem 2.2. For N ≥ 0, the sum of all elements in row RN of the Fibonacci-Pascal triangle
is

SRN
= 3 · 2N − 2fN+1. (2.6)

Proof. We use induction to show that

SRN
= 2N +

N−1∑
i=1

2N−ifi−1, (2.7)

for all N ≥ 2. Begin with the base case, SR2 = 6 = 4 + 2(1) = 22 +

2−1∑
i=1

22−ifi−1. Assume this

holds for some N = k ≥ 2. Applying the recursion (2.1), we have

SRk+1
= 2k+1 +

k−1∑
i=1

2k+1−ifi−1 + 2fk−1 = 2k+1 +

k∑
i=1

2k+1−ifi−1. (2.8)

Therefore, by induction, the equation (2.7) holds for all N ≥ 2. Then consider X =

N−1∑
i=1

fi−1
2i

:

X =
f0
2

+
f1
22

+
f2
23

+ · · ·+ fN−3
2N−2

+
fN−2
2N−1

(2.9)

2X = f0 +
f1
2

+
f2
22

+ · · ·+ fN−3
2N−3

+
fN−2
2N−2

.

Subtract one from the other and exploit the fact that f0 = f1 = 1 and fN − fN−1 = fN−2, it
follows that

X = 1− fN−2
2N−1

+

(
f0
22

+
f1
23

+ · · ·+ fN−4
2N−2

)
. (2.10)

The sum in the parentheses is equal to
X

2
− fN−3

2N−1
− fN−2

2N
. Hence, X = 2 − fN−1

2N−2
− fN−2

2N−1
.

Substituting X into (2.7),

SRN
= 3 · 2N − 4fN−1 − 2fN−2. (2.11)

By the definition of the Fibonacci sequence, the equation above is equal to (2.6). �

3. Geometric Identities on the Generalized Pascal’s Triangle

In Pascal’s triangle, the hockey stick theorem states that

n∑
i=r

(
i

r

)
=

(
n + 1

r + 1

)
. Similarly,

the generalized hockey stick identity appears in the generalized Pascal’s triangle:

Theorem 3.1. For all m,n ≥ 1,

P (m,n) = P (m, 0) +
n∑

i=1

P (m− 1, i) = P (0, n) +

m∑
j=1

P (j, n− 1). (3.1)
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R0 : P (0, 0)
R1 : P (1, 0) P (0, 1)

R2 : P (2, 0) P(1,1) P(0,2)

R3 : P (3, 0) P(2,1) P (1, 2) P (0, 3)

R4 : P (4, 0) P(3,1) P (2, 2) P (1, 3) P (0, 4)

R5 : P (5, 0) P (4, 1) P(3,2) P (2, 3) P (1, 4) P (0, 5)

...

Figure 6: Generalized hockey stick identity for P (3, 2) = P (0, 2) + P (1, 1) + P (2, 1) + P (3, 1).

This identity can be proven by making use of Pascal’s definition P (m,n− 1) +P (m− 1, n) =
P (m,n) for m,n ≥ 1.

The other identity introduced in this section is called the hidden Pascal’s triangle.
To illustrate the idea, we provide an example of this identity in the Fibonacci-Pascal triangle
first. Considering F (4, 3) = 57, we pick this entry and two more entries in the Fibonacci-Pascal
triangle to construct the largest upside-down triangle. In this case, we select F (4, 0) = 5 and
F (1, 3) = 7 as shown in the figure below:

R0 : 1
R1 : 1 1
R2 : 2 2 2
R3 : 3 4 4 3

R4 : 5 7 8 7 5

R5 : 8 12 15 15 12 8

R6 : 13 20 27 30 27 20 13

R7 : 21 33 47 57 57 47 33 21
R8 : 34 54 80 104 114 104 80 54 34

...

Figure 7: The upside-down triangle from F (4, 3) = 57 on the Fibonacci-Pascal triangle.

Next, we obtain a triangular array from its horizontal reflection and then multiply each entry
by a binomial coefficient corresponding to the coordinate of Pascal’s triangle. We have all row

sums equal to F (4, 3) = 57 or F (4, 3) =

h∑
i=0

(
h

i

)
F (4− i, 3− h + i), for all 0 ≤ h ≤ 3.

h = 0 :

(
0

0

)
57

h = 1 :

(
1

0

)
27

(
1

1

)
30

h = 2 :

(
2

0

)
12

(
2

1

)
15

(
2

2

)
15

h = 3 :

(
3

0

)
5

(
3

1

)
7

(
3

2

)
8

(
3

3

)
7xy
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h = 0 :

(
0

0

)
(27 + 30)

h = 1 :

(
1

0

)
(12 + 15)

(
1

1

)
(15 + 15)

h = 2 :

(
2

0

)
(5 + 7)

(
2

1

)
(7 + 8)

(
2

2

)
(8 + 7)

h = 3 :

(
3

0

)
5

(
3

1

)
7

(
3

2

)
8

(
3

3

)
7

Figure 8: The hidden Pascal’s triangle from F (4, 3) on the Fibonacci-Pascal triangle.

For any P (m,n) in the generalized Pascal’s triangle where m,n ≥ 1, we obtain a set VP (m,n)

consisting of three entries of the generalized Pascal’s triangle:

VP (m,n) =


{P (m,n), P (m, 0), P (0, n)} , if m = n

{P (m,n), P (m, 0), P (m− n, n)} , if m > n

{P (m,n), P (m,n−m), P (0, n)} , if m < n.

(3.2)

In our example, VF (4,3) = {F (4, 3), F (4, 0), F (1, 3)}. Construct a new triangular array by form-
ing an upside-down triangle with three entries in VP (m,n) and then, after horizontal reflection
of the upside-down triangle, multiplying each entry by a binomial coefficient corresponding
to the coordinate of Pascal’s triangle. We have all row sums of the new triangular array are
equal to P (m,n).

Theorem 3.2. For all 0 ≤ h ≤ min{m,n},

P (m,n) =
h∑

i=0

(
h

i

)
P (m− i, n− h + i). (3.3)

This identity follows from Pascal’s triangle definition P (m,n − 1) + P (m − 1, n) = P (m,n)

and the binomial identity

(
n

k

)
+

(
n

k + 1

)
=

(
n + 1

k + 1

)
for 0 ≤ k < n.

4. Entry Expression

In this section, we attempt to find an expression of each element of the Fibonacci-Pascal
triangle through a combinatorial approach.

Given a grid of dimensions x × y. Suppose a particle travels from the top-left corner to
the bottom-right corner with each step along an edge of the grid. There are

(
x+y
x

)
=
(
x+y
y

)
shortest paths to reach the destination. In order to complete the journey with the least steps,
the particle needs to move to the right x times and down y times in total. Out of x + y
steps, we need to choose x steps rightward or y steps downward. The binomial coefficients on
Pascal’s triangle are able to be superimposed on this walking problem as shown below [4].
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Figure 9: Superimposing Pascal’s triangle on the grid walk problem on dimension x× y.

Applying this idea to the generalized Pascal’s triangle, each entry can be considered as the
value transfers of sequences an and bn from the boundary to that entry on the grid walk
problem.

Theorem 4.1. The entry expression for the generalized Pascal’s triangle is of the form

P (m,n) =
m∑
i=1

(
m + n− 1− i

n− 1

)
ai +

n∑
j=1

(
m + n− 1− j

m− 1

)
bj , (4.1)

for all m,n ≥ 1.

Proof. We can prove this using induction and the generalized hockey stick identity. Let S(k)
be the statement the equation (4.1) holds where either m or n is k and the other is a positive
integer less than or equal to k. For the base case, we set m = n = 1 to show that S(1) is true:(

0

0

)
a1 +

(
0

0

)
b1 = P (1, 0) +P (0, 1) = P (1, 1). Next, assume the induction hypothesis that for

a particular t ≥ 2, S(t) holds. First, consider P (t+ 1, r) for any 1 ≤ r ≤ t. By Theorem 3.1,

P (t + 1, r) = P (t + 1, 0) +
r∑

u=1

P (t, u) (4.2)

= at+1 +

r∑
u=1

 t∑
i=1

(
t + u− 1− i

u− 1

)
ai +

u∑
j=1

(
t + u− 1− j

t− 1

)
bj

 .

Computing each summation with the aid of the hockey stick theorem, we have
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P (t + 1, r) = at+1 +
t∑

i=1

(
t + r − i

r − 1

)
ai +

r∑
j=1

(
t + r − j

t

)
bj (4.3)

=

t+1∑
i=1

(
t + r − i

r − 1

)
ai +

r∑
j=1

(
t + r − j

t

)
bj .

Likewise, for any 1 ≤ r ≤ t,

P (r, t + 1) =

r∑
i=1

(
t + r − i

t

)
ai +

t+1∑
j=1

(
t + r − j

r − 1

)
bj . (4.4)

Since P (t + 1, t + 1) = P (t + 1, t) + P (t, t + 1), substituting r = t in the two equations above,
the sum of these two equations is

P (t + 1, t + 1) =
t+1∑
i=1

(
2t + 1− i

t

)
ai +

t+1∑
j=1

(
2t + 1− j

t

)
bj . (4.5)

Therefore, S(t + 1) also holds. By induction, (4.1) is true for all m,n ≥ 1.
�

Alternatively, the proof of Theorem 4.1 can be shown by the strong induction (assume
S(2), S(3), ..., S(t) hold for a particular t ≥ 2) and Theorem 3.2. Then setting an = bn = fn
in (4.1), we obtain

Corollary 4.2. The entry expression of the Fibonacci-Pascal triangle is of the form

F (m,n) =

m∑
i=1

(
m + n− 1− i

n− 1

)
fi +

n∑
j=1

(
m + n− 1− j

m− 1

)
fj , (4.6)

for all m,n ≥ 1.

Benjamin and Quinn [1] combinatorially proved that the Fibonacci number fn counts the
number of ways to tile a 1 × n board with squares (1 × 1) and dominoes (1 × 2). f0 = 1 is
the number of tiling an empty space (note that being unable to tile is considered one way).
The other different combinatorial problems related to the Fibonacci numbers are also listed
on Isaak’s note [3]. Altogether, let Wx,y be the set containing shortest paths on the grid walk
problem of dimension x×y and Tn be the set containing tiling a 1×n board with squares and
dominoes where wx,y ∈ Wx,y and tn ∈ Tn. The entry F (m,n) counts all pairs (wn−1,m−i, ti)
and (wm−1,n−j , tj) for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Furthermore, consider the sum

m∑
i=1

(
m + n− 1− i

n− 1

)
zi = z

(m + n− 2)!

(n− 1)!(m− 1)!

m∑
i=1

(m + 1− i)i−1
(m + n− i)i−1

zi−1, (4.7)

for any |z| < 1 and the rising factorial (c)k, for arbitrary c ∈ C, defined by

(c)k =

{
1 for k = 0

c(c + 1)(c + 2) · · · (c + k − 1) for k ≥ 1.
(4.8)

Interchanging i with k = i− 1 in (4.7), we have
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m∑
i=1

(
m + n− 1− i

n− 1

)
zi = z

(
m + n− 2

n− 1

)m−1∑
k=0

(m− k)k
(m + n− 1− k)k

zk. (4.9)

Because (c− k)k = (−1)k(1− c)k, the sum above is equivalent to

m∑
i=1

(
m + n− 1− i

n− 1

)
zi = z

(
m + n− 2

n− 1

)m−1∑
k=0

(1−m)k
(2−m− n)k

zk. (4.10)

Due to the fact that
(1−m)k

(2−m− n)k
zk = 0 for all k ≥ m,

m∑
i=1

(
m + n− 1− i

n− 1

)
zi = z

(
m + n− 2

n− 1

) ∞∑
k=0

(1−m)k
(2−m− n)k

zk. (4.11)

Using (1)k = k!, we obtain

m∑
i=1

(
m + n− 1− i

n− 1

)
zi = z

(
m + n− 2

n− 1

) ∞∑
k=0

(1)k(1−m)k
(2−m− n)k

zk

k!
. (4.12)

By the definition of the hypergeometric function 2F1(a, b; c; z) =
∞∑
k=0

(a)k(b)k
(c)k

zk

k!
,

m∑
i=1

(
m + n− 1− i

n− 1

)
zi = z

(
m + n− 2

n− 1

)
2F 1(1, 1−m; 2−m− n; z), (4.13)

and then

n∑
j=1

(
m + n− 1− j

m− 1

)
zj = z

(
m + n− 2

m− 1

)
2F 1(1, 1− n; 2−m− n; z). (4.14)

In equation (4.6), we apply Binet’s formula fn = Fn+1 =
ϕn+1 − (1− ϕ)n+1

√
5

for the golden

ratio ϕ =
1 +
√

5

2
. It follows that

m∑
i=1

(
m + n− 1− i

n− 1

)
fi =

ϕ√
5

[
m∑
i=1

(
m + n− 1− i

n− 1

)
ϕi −

m∑
i=1

(
m + n− 1− i

n− 1

)
(1− ϕ)i

]
(4.15)

n∑
j=1

(
m + n− 1− j

m− 1

)
fj =

ϕ√
5

 n∑
j=1

(
m + n− 1− j

m− 1

)
ϕj −

n∑
j=1

(
m + n− 1− j

m− 1

)
(1− ϕ)j

 .

The following corollary is derived from substituting (4.13) and (4.14) into (4.15) and exploiting

the fact that

(
m + n− 2

n− 1

)
=

(
m + n− 2

m− 1

)
:

Corollary 4.3. For all m,n ≥ 1,

F (m,n) =
1√
5

(
m + n− 2

m− 1

)
G(m,n), (4.16)
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where

G(m,n) = ϕ2
2F 1(1, 1−m; 2−m− n;ϕ)− (1− ϕ)22F 1(1, 1−m; 2−m− n; 1− ϕ) (4.17)

+ ϕ2
2F 1(1, 1− n; 2−m− n;ϕ)− (1− ϕ)22F 1(1, 1− n; 2−m− n; 1− ϕ).

This also yields another result from the row sum formula Theorem 2.2:

Corollary 4.4. For m,n ≥ 1 and m + n = N ,∑
m,n

1√
5

(
m + n− 2

m− 1

)
G(m,n) = SRN

− 2fN = 3 · 2N − 2fN+2. (4.18)

5. Further Work

Exploring different closed-form solutions for the entry expression of the Fibonacci-Pascal
triangle (4.6) would yield new results and alternative interpretations. The further step is to
investigate if the generalization of Pascal’s triangle (1.1) relates to some generalized binomial
expansion. The result from applying the visual approach (Figure 5) to determine the row sum
SRN

for the generalized Pascal’s triangle is

SRN
= 2SRN−1

+ aN + bN − aN−1 − bN−1. (5.1)

This recursion is derived from Pascal’s definition P (m,n) = P (m,n− 1) + P (m− 1, n) with-
out using the property of Fibonacci numbers. This can begin with the assumption that the
sequences an and bn are linear recurrences in general.

The combinatorial approach to obtain the entry expression (4.1) of the generalized Pascal’s
triangle in the previous section is the concept of how many paths we can transfer each value
on the boundary to a particular entry. It would be interesting to see if this idea applies to
Pascal-like objects in three-dimensional space or higher dimensions.

Since Pascal’s triangle (and its generalization) is an equilateral triangle in two-dimensional
space, we define and illustrate the Pascal-like object for the three-dimensional case with a
tetrahedron.

Figure 10: The Fibonacci-Pascal tetrahedron.
https://www.geogebra.org/m/bdjcjusv
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The figure shown above is a special case related to the Fibonacci-Pascal triangle. The edges
of the tetrahedron consist of three Fibonacci sequences, hence the Fibonacci-Pascal triangles
on the surfaces. Intersections with horizontal planes at different levels lead to triangular arrays
inside the tetrahedron:

Level Intersection
0 1

1
1

1 1

2
2

2 2
2 2 2

3

3
4 4

4 12 4
3 4 4 3

4

5
7 7

8 31 8
7 31 31 7

5 7 8 7 5

5

8
12 8

15 66 12
15 115 115 15

12 66 115 66 12
8 12 15 15 12 8

Table 1: The intersection of the Fibonacci-Pascal tetrahedron with horizontal planes.

Each side on the boundary of the intersection is the corresponding row of the Fibonacci
Pascal’s triangle, and each entry inside is the sum of the nearest six numbers in the level above.

Entry Sum
3

4 4

4 12 4

3 4 4 3

2

2 2

2 2 2

5

7 7

8 31 8

7 31 31 7

5 7 8 7 5

3

4 4

4 12 4

3 4 4 3

8

12 8

15 66 12

15 115 115 15

12 66 115 66 12

8 12 15 15 12 8

5

7 7

8 31 8

7 31 31 7

5 7 8 7 5

Table 2: The entry (left) is the sum of the nearest six numbers in the level above (right).
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