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PROBLEMS PROPOSED IN THIS ISSUE

H-911 Proposed by Hideyuki Ohtsuka, Saitama, Japan
Let r ≥ 2 be an even number, s be an integer, and i =

√
−1. Prove that

(i)

∞∏
n=1

(
1 +

Fr

Frn+s

)
=

1 + βs

1− βr+s
, if s ≥ 0 is even;

(ii)
∞∏
n=1

(
1 +

Fr

Frn+s
i

)
=

αs + i

αs − βri
, if s is odd.

H-912 Proposed by Hideyuki Ohtsuka, Saitama, Japan
Prove that

(i)
∞∑
n=1

1

FnFn+4

(
1

Fn+1
+

1

Fn+2
− 1

Fn+3

)
=

1

3
;

(ii)
∞∑
n=1

(−1)n

FnFn+4

(
1

Fn+1
+

1

Fn+2
− 1

Fn+3

)
= −1

6
;

(iii)

∞∑
n=1

1

FnFn+1Fn+2Fn+3Fn+4

(
1

Fn+1
+

1

Fn+2
− 1

Fn+3

)
=

1

24
.

H-913 Proposed by Hideyuki Ohtsuka, Saitama, Japan
Let r ≥ 1 be an odd integer. Prove that there exist rational numbers P1, Q1, P2, and Q2

such that
∞∑
n=1

(−1)
n(r−1)

2

FnFn+1Fn+2 · · ·Fn+r
= P1

∞∑
n=1

1

FnFn+1
+Q1

and
∞∑
n=1

(−1)n

(FnFn+1Fn+2 · · ·Fn+r)2
= P2

∞∑
n=1

1

FnFn+1
+Q2.
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H-914 Proposed by Benjamin Lee Warren, New York, NY
Let On = 1

3n(2n
2 + 1) denote the nth Octahedral number and Cn = 1

6(n
3 + 5n+ 6) denote

the nth Cake number. Prove the identity

CF2n +OF2n+1 = CF2n+2 .

H-915 Proposed by the editor
Prove that for all k,m, n ≥ 0,

n+2∑
j=0

(
n+ 2

j

)
F2kj+m = (L2k + 2)

n∑
j=0

(
n

j

)
F2k(j+1)+m

and
n+2∑
j=0

(
n+ 2

j

)
L2kj+m = (L2k + 2)

n∑
j=0

(
n

j

)
L2k(j+1)+m.

SOLUTIONS

H-878 Proposed by Robert Frontczak, Stuttgart, Germany
(Vol. 59, No. 3, August 2021)

Prove that for all n ≥ 1,

n∑
k=1

L3
kL

3
k+1 =

1

9

((
5

2
L3(n+1) − L3

n+1

)2

− 81

)
.

Solution by Hideyuki Ohtsuka, Saitama, Japan

We have

3LrLr−1Lr+1 − 5L3r = 3Lr(α
r−1 + βr−1)(αr+1 + βr+1)− 5(α3r + β3r)

= 3Lr

(
(αr + βr)2 − 2(αβ)r + (αβ)r−1(α2 + β2)

)
−5
(
(αr + βr)3 − 3(αβ)r(αr + βr)

)
= 3Lr(L

2
r − 2(−1)r − (−1)rL2)− 5(L3

r − 3(−1)rLr)

= −2L3
r .

Thus,

LrLr−1Lr+1 =
5L3r − 2L3

r

3
and using the solution of B-1247,

n∑
k=1

L3
kL

3
k+1 =

(
LnLn+1Ln+2

2

)2

−
(
L0L1L2

2

)2

=
1

4
(LnLn+1Ln+2)

2 − 9

=
1

4

(5L3(n+1) − 2L3
n+1)

2

9
− 9

=
1

9

((
5

2
L3(n+1) − L3

n+1

)2

− 81

)
.
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Also solved by Michel Bataille, Brian Bradie, Dmitry Fleischman, Wei-Kai Lai,
Ángel Plaza, Raphael Schumacher, Albert Stadler, David Terr, Andrés Ventas,
and the proposer.

H-879 Proposed by Robert Frontczak, Stuttgart, Germany
(Vol. 59, No. 3, August 2021)

Prove the following identities for the Fibonacci and Lucas numbers.

√
5(F2n − Fn) =

n∑
k=1

(
n

k

)
(k + 1)k−1((α− k)n−k − (β − k)n−k)

=
n∑

k=1

(
n

k

)
(−1)k−1(k − 1)k−1((α+ k)n−k − (β + k)n−k),

and

L2n − Ln =
n∑

k=1

(
n

k

)
(k + 1)k−1((α− k)n−k + (β − k)n−k)

=
n∑

k=1

(
n

k

)
(−1)k−1(k − 1)k−1((α+ k)n−k + (β + k)n−k).

Solution by Michel Bataille, Rouen, France

We use the following result from [1]: If n ∈ N and x, y ∈ C with x ̸= 0, then
n∑

k=1

(
n

k

)
(x+ k)k−1(y + n+ 1− k)n−k =

(x+ y + n+ 1)n − (y + n+ 1)n

x
. (1)

In (1), we let x = 1 and y = α− n− 1 and obtain
n∑

k=1

(
n

k

)
(k + 1)k−1(α− k)n−k =

(1 + α)n − αn

1
= α2n − αn.

Similarly,
n∑

k=1

(
n

k

)
(k + 1)k−1(β − k)n−k = β2n − βn

and by subtraction and addition, the first and third identity follow. Next, we let x = −1 and
y = −α− n− 1 in (1) and deduce that

n∑
k=1

(
n

k

)
(−1)k−1(k − 1)k−1(α+ k)n−k = α2n − αn

and
n∑

k=1

(
n

k

)
(−1)k−1(k − 1)k−1(β + k)n−k = β2n − βn

and the second and fourth identity immediately follow.

Reference

[1] M. Bataille, Focus on . . . No. 15, A formula of Euler, Crux Mathematicorum, 41.1 (2015), 16–18.

Also solved by Dmitry Fleischman, Albert Stadler, and the proposer.
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H-880 Proposed by Sergio Falcón and Ángel Plaza, Gran Canaria, Spain
(Vol. 59, No. 3, August 2021)

For any positive integer k, the Fibonacci k-sequence {Fk,n}n≥0 is defined by Fk,n+1 =
kFk,n + Fk,n−1 for n ≥ 1 with Fk,0 = 0 and Fk,1 = 1. Prove that

n∑
i=0

(
2n+ 1

n− i

)
Fk,2i+1 = (k2 + 4)n.

Solution by Albert Stadler, Herrliberg, Switzerland

Binet’s formula for the k-Fibonacci numbers is

Fk,n =
σn
1 − σn

2

σ1 − σ2
,

where σ1 =
k+

√
k2+4
2 and σ2 =

k−
√
k2+4
2 . Clearly, σ1σ2 = −1. Thus,

n∑
i=0

(
2n+ 1

n− i

)
Fk,2i+1 =

1

σ1 − σ2

n∑
i=0

(
2n+ 1

n− i

)(
σ2i+1
1 +

1

σ2i+1
1

)

=
1√

k2 + 4

n∑
i=0

(
2n+ 1

n− i

)
σ2i+1
1 +

1√
k2 + 4

n∑
i=0

(
2n+ 1

n+ 1 + i

)
1

σ2i+1
1

=
1√

k2 + 4

n∑
i=0

(
2n+ 1

i

)
σ2n+1−2i
1 +

1√
k2 + 4

2n+1∑
i=n+1

(
2n+ 1

i

)
1

σ
2(i−n−1)+1
1

=
1√

k2 + 4

2n+1∑
i=0

(
2n+ 1

i

)
σ2n+1−2i
1 =

1√
k2 + 4

(
σ1 +

1

σ1

)2n+1

=
1√

k2 + 4

(√
k2 + 4

)2n+1
= (k2 + 4)n.

Also solved by Michel Bataille, Brian Bradie, Nandan Sai Dasireddy, Dmitry
Fleischman, Andrés Ventas, and the proposers.

H-881 Proposed by Hideyuki Ohtsuka, Saitama, Japan
(Vol. 59, No. 3, August 2021)

For any positive integers r and n, prove that

n∑
k=0

(
2n

n− k

)
F4rk

F4r
=

n−1∑
k=0

(
2k

k

)
L2n−2k−2
2r .

Solution by Albert Stadler, Herrliberg, Switzerland

We express the binomial coefficient
(

2n
n−k

)
as a complex integral using Cauchy’s integral

theorem. That is, (
2n

n− k

)
=

1

2πi

∫
|z|= 1

2α4r

(1 + z)2n

zn−k+1
dz,

where i =
√

−1 and |z| = 1
2α4r denotes the circle centered at the origin with radius 1

2α4r that
is run through once in the positive direction. Then,
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n∑
k=0

(
2n

n− k

)
F4rk

F4r
=

1√
5F4r

∞∑
k=0

1

2πi

∫
|z|= 1

2α4r

(1 + z)2n

zn−k+1

(
α4rk − β4rk

)
dz

=
1√
5F4r

1

2πi

∫
|z|= 1

2α4r

(1 + z)2n

zn+1

(
1

1− α4rz
− 1

1− β4rz

)
dz

=
1

2πi

∫
|z|= 1

2α4r

(1 + z)2n

zn

(
1

1− L4rz + z2

)
dz

=
1

2πi

∫
|z|= 1

2α4r

(1 + z)2n

zn

(
1

(1 + z)2 − L2
2rz

)
dz

=
1

2πi

∫
|z|= 1

2α4r

(1 + z)2n−2

zn

 1

1− L2
2rz

(1+z)2

 dz

=

∞∑
k=0

L2k
2r

1

2πi

∫
|z|= 1

2α4r

(1 + z)2n−2−2k

zn−k
dz

=

∞∑
k=0

L2k
2r

(
2n− 2− 2k

n− k − 1

)

=
n−1∑
k=0

L
2(n−1−k)
2r

(
2k

k

)
.

In the proof, we used the identity

L4r = α4r + β4r = (α2r + β2r)2 − 2 = L2
2r − 2.

Also solved by Dmitry Fleischman, and the proposer.

H-882 Proposed by Robert Frontczak, Stuttgart, Germany
(Vol. 59, No. 3, August 2021)

Prove the following identities for Fibonacci and Lucas numbers.
n∑

k=0

(
n

k

)
Fk + Lk

k + 1
=

F2n+1 + L2n+1

n+ 1
and

n∑
k=0

(
n

k

)
Fk + Lk

(k + 1)(k + 2)
=

F2n+2 + L2n+2 − 2

(n+ 1)(n+ 2)
.

Solution by Andrés Ventas, Santiago de Compostela, Spain

We provide a generalization to gibonacci sequences Gn+2 = Gn+1 + Gn with arbitrary G0

and G1. We will need the following lemma.

Lemma. For all n ≥ 1, we have
n∑

k=1

(
n

k

)
Gk−1 = G2n−1 −∆ where ∆ = G1 −G0 (1)

and
n∑

k=2

(
n

k

)
Gk−2 = G2n−2 −∆n where ∆n = G1 + (n− 2)(G1 −G0). (2)

Proof. Both identities are elementary and can be proved by induction on n. □
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Let G1,n and G2,n be two gibonacci sequences. Then,

n∑
k=0

(
n

k

)
G1,k +G2,k

k + 1
=

n+ 1

n+ 1

n∑
k=0

(
n

k

)
G1,k +G2,k

k + 1

=
1

n+ 1

n∑
k=0

(
n+ 1

k + 1

)
(G1,k +G2,k)

=
1

n+ 1

n+1∑
k=1

(
n+ 1

k

)
(G1,k−1 +G2,k−1)

=
1

n+ 1
(G1,2n+1 +∆1 +G2,2n+1 +∆2) ,

where (1) was used in the last step. For G1,n = Fn and G2,n = Ln, we have ∆1 = F1 −F0 = 1
and ∆2 = L1 − L0 = −1. Similarly using (2),

n∑
k=0

(
n

k

)
G1,k +G2,k

(k + 1)(k + 2)
=

(n+ 1)(n+ 2)

(n+ 1)(n+ 2)

n∑
k=0

(
n

k

)
G1,k +G2,k

(k + 1)(k + 2)

=
1

(n+ 1)(n+ 2)

n∑
k=0

(
n+ 2

k + 2

)
(G1,k +G2,k)

=
1

(n+ 1)(n+ 2)

n+2∑
k=2

(
n+ 2

k

)
(G1,k−2 +G2,k−2)

=
1

(n+ 1)(n+ 2)
(G1,2n+2 −∆1,n +G2,2n+2 −∆2,n) .

For G1,n = Fn and G2,n = Ln, we have ∆1,n = F1 − n(F1 − F0) = 1 − n and ∆2,n =
L1 − n(L1 − L0) = 1 + n, so that −∆1,n −∆2,n = −2.

Also solved by Michel Bataille, Brian Bradie, Nandan Sai Dasireddy, Dmitry
Fleischman, Hideyuki Ohtsuka, Ángel Plaza, Raphael Schumacher, Jason L. Smith,
Albert Stadler, and the proposer.

Errata: In Advanced Problem H-906, the correct expression for Dn is Dn = (1−(−1)n)/2.
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