
ADVANCED PROBLEMS AND SOLUTIONS

EDITED BY
ROBERT FRONTCZAK AND FLORIAN LUCA

Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS
to Robert Frontczak, LBBW, Am Hauptbahnhof 2, 70173 Stuttgart, Germany, or by e-mail at
the address robert.frontczak@lbbw.de. This department especially welcomes problems believed
to be new or extending old results. Proposers should submit solutions or other information that
will assist the editor. To facilitate their consideration, all solutions sent by regular mail should
be submitted on separate signed sheets within two months after publication of the problems.

PROBLEMS PROPOSED IN THIS ISSUE

H-906 Proposed by Kenny B. Davenport, Dallas, PA
Prove the identity

3

(
n∑

k=1

Fk−3Fk−2Fk−1Fk+1Fk+2Fk+3 −
n∑

k=1

F 6
k

)
= 4(−1)n(FnFn+1)

2 − 11FnFn+1 + 12Dn,

where Dn = (1 + (−1)n)/2 is 0 if n is odd and 1 if n is even.

H-907 Proposed by Andrés Ventas, Santiago de Compostela, Spain, and Curtis
Cooper, Warrensburg, MO

Let n ≥ 0 be an integer. Prove that

F3n =

⌊(n−1)/2⌋∑
i=0

(
n− i− 1

i

)
22n−1−4i.

H-908 Proposed by D. M. Bătineţu Giurgiu, Bucharest, Romania, and Neculai
Stanciu, Buzău, Romania

Prove that in every triangle ABC with area F and altitudes ha, hb, hc perpendicular to the
sides a, b, c, respectively, the following inequalities hold:

(i)
aFnbFn+2

h
Fn+1
a

+
bFncFn+2

h
Fn+1

b

+
cFnaFn+2

h
Fn+1
c

≥ 2Fn+Fn+2
√
3
2−Fn+2

FFn ;

(ii)
aF

2
nbF2n+1

h
F 2
n+1

a

+
bF

2
ncF2n+1

h
F 2
n+1

b

+
cF

2
naF2n+1

h
F 2
n+1

c

≥ 2F2n+1+F 2
n
√
3
2−F2n+1

FF 2
n .

H-909 Proposed by Michel Bataille, Rouen, France
Let n be a positive integer. For each integer k in [0, n/2], let

Un,k =

k∑
j=0

(
k

j

)
4j

n− j
and Vn,k =

k∑
j=0

(
n

j

)
(−5)j .
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Prove that

n

⌊n/2⌋∑
k=0

(
n+ 1

2k + 1

)
Un,k = 2nLn =

⌊n/2⌋∑
k=0

(
n+ 1

2k + 1

)
(−1)kVn,k(

n−1
k

) .

H-910 Proposed by Robert Frontczak, Stuttgart, Germany
Show the following identity involving Lucas numbers holds:

∞∑
k=1

Lk+1

k(k + 1)22k+1
= 1− π2

12
+

ln(2)

2
(2 ln(2)− 3)− ln(α)(2 ln(α)−

√
5).

SOLUTIONS

Fibonacci numbers and the alternating Riemann zeta function

H-872 Proposed by Robert Frontczak, Stuttgart, Germany
(Vol. 59, No. 1, February 2021)

Prove that
∞∑
n=1

η(2n)
F2n

5n
=

π

10 cos( π
2
√
5
)

and
∞∑
n=1

η(2n)
L2n

5n
=

π

2 cos( π
2
√
5
)
− 1,

where η(s) =
∑∞

k=1(−1)k−1/ks (defined for Re(s) > 0) is the Dirichlet η (or alternating
Riemann zeta) function.

Solution by the proposer

We will need the following lemma.

Lemma. For all complex numbers z with |z| < π it holds that

∞∑
n=1

η(2n)z2n =
1

2

(
πz

sin(πz)
− 1

)
.

Proof. The connection between the Riemann zeta function and its alternating variant is

η(s) = (1− 21−s)ζ(s).

Therefore, using
∞∑
n=1

ζ(2n)z2n =
1

2
(1− πz cot(πz)) , (|z| < π),

we have
∞∑
n=1

η(2n)z2n =

∞∑
n=1

ζ(2n)z2n − 2

∞∑
n=1

ζ(2n)
(z
2

)2n
= −1

2
− πz

2

(
cot(πz)− cot

(πz
2

))
= −1

2
− πz

2

(
cos(πz)

sin(πz)
− cos(πz/2)

sin(πz/2)

)
,

and the statement follows upon using the addition formula for the sine function sin(x+ y) =
sinx cos y + cosx sin y. □
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Having the above result in hand, we can prove the first identity directly calculating

∞∑
n=1

η(2n)
F2n

5n
=

1√
5

( ∞∑
n=1

η(2n)

(
α√
5

)2n

−
∞∑
n=1

η(2n)

(
β√
5

)2n
)

=
1

2
√
5

(
πα/

√
5

sin(πα/
√
5)

− πβ/
√
5

sin(πβ/
√
5)

)
.

Because
πα√
5
=

π

2
+

π

2
√
5

and
πβ

2
√
5
=

π

2
− π

2
√
5
,

the result follows by inserting the above formulas and simplifying using the addition formula
for the sine function. The second identity is proved in the same manner, and the proof is
omitted.

Editor’s note: Andrés Ventas points out that a generalized version of this problem has
appeared in [1].

Reference

[1] K. Boyadzhiev and R. Frontczak, Series involving Euler’s Eta (or Dirichlet’s Eta) Function, J. Integer
Sequences, 24 (2021), Article 21.9.1.

Also solved by Brian Bradie, Dmitry Fleischman, Haydn Gwyn, Raphael
Schumacher, Albert Stadler, Séan M. Stewart, and David Terr.

Identities with Fibonacci and Tribonacci numbers

H-873 Proposed by Robert Frontczak, Stuttgart, Germany
(Vol. 59, No. 2, May 2021)

Let (Tn)n≥0 be the Tribonacci sequence defined by Tn+3 = Tn+2 + Tn+1 + Tn for all n ≥ 0
with T0 = 0, T1 = T2 = 1. Prove the following identities valid for all n ≥ 2:

(i)

Tn = (−1)n+1Fn + 2(−1)nFn−1 +

n−2∑
k=0

(−1)k+1Fk(2Tn−k + Tn−2−k).

(ii)∑
1≤i<j≤n

(Fj − Fi)(Tn−j − Tn−i) = n(Tn+2 − Fn+2)−
1

2
(Fn+2 − 1)(Tn+1 + Tn−1 − 1).

(iii)∑
1≤i<j≤n

(Lj−Li)(Tn−j−Tn−i) = n(2Tn+3−Tn+2−2Tn−Ln+2)−
1

2
(Ln+2−3)(Tn+1+Tn−1−1).

Solution by Andrés Ventas, Santiago de Compostela, Spain

For (i) we use the same method as used in [1]. We also need the generating function for the
alternating Fibonacci sequence obtained with Maxima (see [2]):

fa(x) = ggf([0, 1,−1, 2,−3, 5,−8, 13,−21, 34,−55]) = − x

x2 − x− 1
.
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fa(x) =
x

1 + x− x2
. u(x) =

x

1− x− x2 − x3
.

1 + x− x2 − 2x− x3 = 1− x− x2 − x3 ⇒ x

fa(x)
− 2x− x3 =

x

u(x)
.

u(x) = fa(x) + fa(x)u(x)(2 + x2).

Tn = (−1)n+1Fn +

n∑
k=0

(−1)k+1FkTn−k · 2 +
n−2∑
k=0

(−1)k+1FkTn−2−k.

Tn = (−1)n+1Fn + 2(−1)nFn−1 +

n−2∑
k=0

(−1)k+1Fk(2Tn−k + Tn−2−k).

For (ii) and (iii) we use the Binet–Cauchy identity (see [3]):( n∑
i=1

aici

)( n∑
j=1

bjdj

)
=

( n∑
i=1

aidi

)( n∑
j=1

bjcj

)
+

∑
1≤i<j≤n

(aibj − ajbi)(cidj − cjdi),

and several identities obtained or cited in Theorems 2.1, 2.3, Identities 3.7, 3.10, 3.30:

(Theorem 2.1) Tn = Fn +
n−2∑
k=0

FkTn−2−k ⇒
n∑

k=1

FkTn−k = Tn+2 − Fn+2 − F0Tn.

(Theorem 2.3) 2Tn = Tn−1 + Ln−1 +

n−3∑
k=0

LkTn−3−k ⇒

n∑
k=1

LkTn−k = 2Tn+3 − Tn+2 − Ln+2 − L0Tn.

(Id. 3.7)
N∑

n=1

Fn = FN+2 − 1.

(Id. 3.10)
N∑

n=1

Tn =
1

2
(TN+2 + TN − 1). (Id. 3.30)

N∑
n=1

Ln = LN+2 − 3.

(ii) Substituting ai = 1, di = 1, bi = Fi, bj = Fj , ci = Tn−i, and cj = Tn−j into the
Binet–Cauchy identity we get( n∑

i=1

Tn−i

)( n∑
j=1

Fj

)
=

( n∑
i=1

1

)( n∑
j=1

FjTn−j

)
+

∑
1≤i<j≤n

(Fj − Fi)(Tn−i − Tn−j) ⇒

∑
1≤i<j≤n

(Fj − Fi)(Tn−j − Tn−i) =

( n∑
i=1

1

)( n∑
j=1

FjTn−j

)
−
( n∑

i=1

Tn−i

)( n∑
j=1

Fj

)
.

∑
1≤i<j≤n

(Fj − Fi)(Tn−j − Tn−i) = n(Tn+2 − Fn+2)−
1

2
(Tn+1 + Tn−1 − 1)(Fn+2 − 1).
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And now we do the same for (iii), substituting ai = 1, di = 1, bi = Li, bj = Lj , ci = Tn−j ,
and cj = Tn−i into the Binet–Cauchy identity and using the identities for Lucas numbers.( n∑

i=1

Tn−i

)( n∑
j=1

Lj

)
=

( n∑
i=1

1

)( n∑
j=1

LjTn−j

)
+

∑
1≤i<j≤n

(Lj − Li)(Tn−i − Tn−j) ⇒

∑
1≤i<j≤n

(Lj − Li)(Tn−j − Tn−i) =

( n∑
i=1

1

)( n∑
j=1

LjTn−j

)
−
( n∑

i=1

Tn−i

)( n∑
j=1

Lj

)
.

∑
1≤i<j≤n

(Lj − Li)(Tn−j − Tn−i) = n(2Tn+3 − Tn+2 − Ln+2 − 2Tn)

− 1

2
(Tn+1 + Tn−1 − 1)(Ln+2 − 3).

References

[1] R. Frontczak, Some Fibonacci-Lucas-Tribonacci-Lucas identities, The Fibonacci Quarterly, 56.3 (2018),
263–274.
[2] Maxima.sourceforge.io, Maxima, a Computer Algebra System, Version 5.45.1 (2021) https://maxima.

sourceforge.io/

[3] Wikipedia, Binet-Cauchy identity, https://en.wikipedia.org/wiki/Binet-Cauchy_identity/

Also solved by Dmitry Fleischman, Albert Stadler, and the proposer.

Catalan meets Fibonacci

H-874 Proposed by Robert Frontczak, Stuttgart, Germany
(Vol. 59, No. 2, May 2021)

Let Cn be the nth Catalan number; i.e., Cn =
1

n+ 1

(
2n

n

)
, and α be the golden section.

Prove that
∞∑
n=1

F2n

n(n+ 1)Cn
= α−2

∞∑
n=1

L2n

n(n+ 1)Cn
= 2π

√
α

25
√
5
.

Solution by Michel Bataille, Rouen, France

We use the following theorem, stated and proved in [1]: If |x| < 1, then

∞∑
m=1

(2x)2m

m
(
2m
m

) =
2x arcsin(x)√

1− x2
.

Because
∣∣α
2

∣∣ , ∣∣∣β2 ∣∣∣ < 1, this theorem yields

∞∑
n=1

α2n

n
(
2n
n

) =
2α arcsin(α/2)√

4− α2
,

∞∑
n=1

β2n

n
(
2n
n

) =
2β arcsin(β/2)√

4− β2
.

We have α
2 =

√
5+1
4 = cos π

5 ; hence, arcsin(α/2) = π
2 − arccos(α/2) = π

2 − π
5 = 3π

10 and

4−α2 = 3−α. Similarly, we find arcsin(β/2) = − π
10 and 4− β2 = 3− β. If S =

∞∑
n=1

F2n
n(n+1)Cn

,
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it follows that

S =
1√
5

∞∑
n=1

(
α2n

n
(
2n
n

) − β2n

n
(
2n
n

)) =
1√
5
· π

10
· 2
(

3α√
3− α

+
β√
3− β

)
=

π

5
√
5
· 3α

√
3− β + β

√
3− α√

(3− α)(3− β)
.

Easy calculations give
√

(3− α)(3− β) =
√
5 and (3α

√
3− β + β

√
3− α)2 = 50 + 10

√
5 so

that

S =
π

5
√
5
· 1√

5

√
50 + 10

√
5 =

π
√
10

25

√
5 +

√
5 =

π
√
10

25

√
10α√
5

= 2π

√
α

25
√
5
.

In the same way, we calculate T =
∞∑
n=1

L2n
n(n+1)Cn

as follows:

T =

∞∑
n=1

(
α2n

n
(
2n
n

) + β2n

n
(
2n
n

)) =
π

5

(
3α√
3− α

− β√
3−β

)
=

π

5
√
5

√
50 + 22

√
5.

The required result follows because 2
√
5α2
√

α√
5
= (5+3

√
5)

√
5+

√
5

10 =
√
50 + 22

√
5 is readily

checked.

Reference

[1] D. H. Lehmer, Interesting series involving the central binomial coefficient, Amer. Math. Monthly, 92.7
(1985), 452.

Also solved by Brian Bradie, Dmitry Fleischman, Hideyuki Ohtsuka, Raphael
Schumacher, Albert Stadler, Séan M. Stewart, Andrés Ventas, and the proposer.

A geometric inequality involving Fibonacci numbers

H-875 Proposed by D. M. Bătineţu-Giurgiu, Bucharest, Romania, and Neculai
Stanciu, Buzău, Romania
(Vol. 59, No. 2, May 2021)

Let ABC be a triangle with a, b, c the lengths of the sides, R the length of the circumradius,
r the length of the inradius, and s the semiperimeter. Prove that(

F 2
na

2 + F 2
n+1b

2

c

)2

+

(
F 2
nb

2 + F 2
n+1c

2

a

)2

+

(
F 2
nc

2 + F 2
n+1a

2

b

)2

≥ 2F 2
2n+1(s

2 − r2 − 4Rr)

holds for all n ≥ 0.

Solution by Brian Bradie, Newport News, VA

By the Cauchy-Schwarz inequality,(
F 2
na

2 + F 2
n+1b

2

c

)2

+

(
F 2
nb

2 + F 2
n+1c

2

a

)2

+

(
F 2
nc

2 + F 2
n+1a

2

b

)2

≥
((F 2

n + F 2
n+1)(a

2 + b2 + c2))2

a2 + b2 + c2

= F 2
2n+1(a

2 + b2 + c2).
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The desired result follows from the identity

a2 + b2 + c2 = 2(s2 − r2 − 4Rr).

Also solved by Michel Bataille, Dmitry Fleischman, Wei-Kai Lai, Nandan Sai
Dasireddy, Albert Stadler, Andrés Ventas, and the proposers.

Inequalities with Fibonacci and Lucas numbers

H-876 Proposed by I. V. Fedak, Ivano-Frankivsk, Ukraine
(Vol. 59, No. 2, May 2021)

For all positive integers n, prove that

Fn+2 ≥
√

FnFn+1 + 1

n+ 1
+n n+1

√
F1F2 · · ·Fn; Ln+2 ≥

√
LnLn+1 + 1

n+ 3
+(n+2) n+3

√
L1L2 · · ·Ln.

Solution by Michel Bataille, Rouen, France

We first show the following lemma.

Lemma. Let a1, a2, . . ., an be positive real numbers with sum S, geometric mean G, and
quadratic mean Q. Then, S ≥ Q+ (n− 1)G.

Proof. Because a21 + a22 + · · ·+ a2n = nQ2 and∑
1≤i<j≤n

aiaj ≥
n(n− 1)

2
(an−1

1 · an−1
2 · · · an−1

n )
2

n(n−1) =
n(n− 1)

2
G2

(using the arithmetic mean-geometric mean inequality), we obtain S2 ≥ nQ2 + n(n − 1)G2.
Therefore, it is sufficient to prove that

nQ2 + n(n− 1)G2 ≥ Q2 + (n− 1)2G2 + 2(n− 1)QG.

We are done because this becomes (n− 1)(Q−G)2 ≥ 0, which obviously holds. □

We first apply the lemma with n + 1 instead of n and with a1 = F1 and ak = Fk−1 for
k = 2, 3, . . . , n+ 1. We obtain

F1 +
n∑

k=1

Fk ≥

√
F 2
1 +

∑n
k=1 F

2
k

n+ 1
+ n n+1

√
F1 · F1 · F2 · · ·Fn. (1)

Because F1 = 1,
∑n

k=1 Fk = Fn+2 − 1 and
∑n

k=1 F
2
k = FnFn+1, (1) rewrites as

Fn+2 ≥
√

FnFn+1 + 1

n+ 1
+ n n+1

√
F1F2 · · ·Fn.

Second, we apply the lemma with n + 3 instead of n and with a1 = a2 = a3 = L1 = 1 and
ak = Lk−3 for k = 4, 5, . . . , n + 3. Similarly, because

∑n
k=1 Lk = Ln+2 − 3 and

∑n
k=1 L

2
k =

LnLn+1 − 2, we obtain

Ln+2 ≥
√

LnLn+1 + 1

n+ 3
+ (n+ 2) n+3

√
L1L2 · · ·Ln.

Also solved by Ilia Antypenko, Brian Bradie, Dmitry Fleischman, Albert Stadler,
Andrés Ventas, and the proposer.
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Some formulas involving powers of Lucas numbers

H-877 Proposed by Hideyuki Ohtsuka, Saitama, Japan
(Vol. 59, No. 2, May 2021)

Given an even integer r and an integer n ≥ 0, prove that
n∑

k=0

(
2n− k

n

)
Lk
rLr(k+1) = L2n+1

r .

Solution by Robert Frontczak, Stuttgart, Germany

The proposed identity is not new and appeared in [1]. In [1], equation (3.2), a generalization
of the proposal is stated in the equivalent form

n∑
k=1

(
2n− 1− k

n− 1

)
Lk
rLrk = (−1)rnL2n

r ,

which reduces to the proposed identity when r is even. The identities reappeared recently in
[2].

References

[1] P. Filipponi, Some binomial Fibonacci identities, The Fibonacci Quarterly, 33.3 (1995), 251–257.
[2] R. Frontczak and T. Goy, Combinatorial sums associated with balancing and Lucas balancing polynomials,
Annales Math. et Inf., 52 (2020), 97–105.

Also solved by Michel Bataille, Brian Bradie, Dmitry Fleischman, Raphael
Schumacher, Albert Stadler, and the proposer.

Acknowledgement. Albert Stadler solved H-871.
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