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BASIC FORMULAS

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy

Fn+2 = Fn+1 + Fn, F0 = 0, F1 = 1;

Ln+2 = Ln+1 + Ln, L0 = 2, L1 = 1.

Also, α = (1 +
√
5)/2, β = (1−

√
5)/2, Fn = (αn − βn)/

√
5, and Ln = αn + βn.

PROBLEMS PROPOSED IN THIS ISSUE

B-1171 Proposed by José Luis D́ıaz-Barrero, Barcelona Tech, Barcelona, Spain.

For all integers n ≥ 1, compute

(Fn−1 + Fn+1)
3 + (2Fn + Fn+3)

3 + (5Fn + Fn+3)
3 + (9Fn + Fn+3)

3

8F 3
n+1

+ F 3
n+3

+ (7Fn + Fn+3)3 + (8Fn + Fn+3)3
.
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B-1172 Proposed by Steve Edwards, Kennesaw State University, Marietta, GA.

Show that the area of the triangle whose vertices have coordinates (Fn, Fn+k), (Fn+2k, Fn+3k),
(Fn+4k, Fn+5k) is

5F 4
kLk

2
if k is even and

F 2
kL

3
k

2
if k is odd.

Also, find the area of the triangle whose vertices have coordinates (Ln, Ln+k), (Ln+2k, Ln+3k),
(Ln+4k, Ln+5k).

B-1173 Proposed by D. M. Bătineţu–Giurgiu, Matei Basarab National College,
Bucharest, Romania and Neculai Stanciu, George Emil Palade School,
Buzău, Romania.

(i) Prove that

F1

(F 2
1
+ F 2

2
)m+1

+
F2

(F 2
1
+ F 2

2
+ F 2

3
)m+1

+ · · · + Fn

(F 2
1
+ F 2

2
+ · · ·+ F 2

n+1
)m+1

≥ 1

Fm
n+2

− 1

Fm+1
n+2

for any positive integer n and any positive real number m.

(ii) Prove that

L1

(L2
1
+ L2

2
+ 2)2

+
L2

(L2
1
+ L2

2
+ L2

3
+ 2)2

+ · · ·+ Ln

(L2
1
+ L2

2
+ · · ·+ L2

n+1
+ 2)2

≥ (Ln+2 − 1)2

L2
n+2

(Ln+2 − 3)

for any positive integer n.

B-1174 Proposed by Hideyuki Ohtsuka, Saitama, Japan.

Prove that
∞
∑

n=3

(−1)n

F 4
n − 1

= − 1

18
.

B-1175 Proposed by D. M. Bătineţu–Giurgiu, Matei Basarab National College,
Bucharest, Romania and Neculai Stanciu, George Emil Palade School,
Buzău, Romania.

Let m ≥ 0 and n ∈ N . Prove that
(√

F2n+1 − Fn+1

)m
+
(√

F2n+1 + Fn+1

)m ≥ 2Fm
n .

SOLUTIONS

Radicals and Factorials!

B-1151 Proposed by D. M. Bătineţu–Giurgiu, Matei Basarab National College,
Bucharest, Romania and Neculai Stanciu, George Emil Palade School,
Buzău, Romania.
(Vol. 52.3, August 2014)

Calculate each of the following:

(i) lim
n→∞

(

n+1
√

(n+ 1)!Fn+1 − n
√

n!Fn

)

,
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(ii) lim
n→∞

(

n+1
√

(n+ 1)!Ln+1 − n
√

n!Ln

)

,

(iii) lim
n→∞

(

n+1
√

(2n+ 1)!!Fn+1 − n
√

(2n − 1)!!Fn

)

,

(iv) lim
n→∞

(

n+1
√

(2n+ 1)!!Ln+1 − n
√

(2n− 1)!!Ln

)

.

Solution by Hideyuki Ohtsuka, Saitama, Japan.

We use the following lemma.

Lemma. (by Gh. Toader [1]). If the positive sequence {pn} is such that

lim
n→∞

pn+1

npn
= p > 0

then
lim
n→∞

( n+1
√
pn+1 − n

√
pn) =

p

e
.

(i) We have

lim
n→∞

(n+ 1)!Fn+1

n · n!Fn

= lim
n→∞

(

1 +
1

n

)

Fn+1

Fn

= α.

Therefore, using the lemma, we have

lim
n→∞

(

n+1
√

(n+ 1)!Fn+1 − n
√

n!Fn

)

=
α

e
.

(ii) Replacing Fn with Ln and using the lemma we get the same value for the limit in (i).

Since

lim
n→∞

(2n + 1)!!Fn+1

n(2n− 1)!!Fn

= lim
n→∞

(2 + 1)!!Ln+1

n(2n− 1)!!Ln

=
2α

e
,

the lemma implies that the limits in (iii) and (iv) have the same value 2α
e
.

References

[1] Gh. Toader, Lalescu sequences, Publikacije-Elektrotehnickog Fakulteta Univerzitet U Beogradu Serija
Matematika, 9 (1998), 19–28.

Also solved by Kenneth B. Davenport, Dmitry Fleischman, G. C. Greubel, Harris
Kwong, Ángel Plaza, and the proposer.

A Closed Form for an Infinite Sum

B-1152 Proposed by Ángel Plaza and Sergio Falcón, Universidad de Las Palmas
de Gran Canaria, Spain.
(Vol. 52.3, August 2014)

For any positive integer number k, the k-Fibonacci and k-Lucas sequences, {Fk,n}n∈N and
{Lk,n}n∈N, both are defined recurrently by un+1 = kun+un−1 for n ≥ 1 with respective initial
conditions Fk,0 = 0, Fk,1 = 1, and Lk,0 = 2, Lk,1 = k. Find a closed form expression for

∞
∑

n=1

Fk,2n

1 + Lk,2n+1

as a function of α = k+
√
k2+4

2
.
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Solution by the proposers.

The sum for k = 1, that is for classical Fibonacci and Lucas numbers, is Example 7 in [1,
p. 74]. The same argument given there may be applied for general k-Fibonacci and k-Lucas
numbers. We use the following result from [1, Corollary 1].

Corollary. Let c, d ∈ Z, d ≥ 2, c 6= 0. Let P,Q ∈ C[x] satisfying P (0) = Q(0) = 1 and
P (xd) = P (x)Q(x). Then for every |x| < 1

∞
∑

n=0

(

d

c

)n

xd
n Q′(xd

n

)P (xd
n

)− (c− 1)P ′(xd
n

)Q(xd
n

)

P (xdn+1)
= −cx

P ′(x)

P (x)
. (1)

Taking d = c = 2, P (x) = x2 + x+ 1, and Q(x) = x2 − x+ 1 it is obtained

∞
∑

n=0

x2n
x2

n+1 − 1

x2n+2 + x2n+1 + 1
= − x(2x+ 1)

x2 + x+ 1
. (2)

Note that Fk,n = αn−βn

α−β
and Lk,n = αn + βn where α = k+

√
k2+4

2
and β = k−

√
k2+4

2
, so by

letting x = α−1 in (2), we have

α− α−1

1 + α2 + α−2
+

∞
∑

n=1

(α− β)Fk,2n

1 + Lk,2n+1

=
1

α
· α+ 2

1 + α+ α−1

∞
∑

n=1

(α− β)Fk,2n

1 + Lk,2n+1

=
2 + α2

1 + α2 + α4
.

Since α− β = α+ α−1, we obtain
∞
∑

n=1

Fk,2n

1 + Lk,2n+1

=

(

α+
1

α

)−1( 2 + α2

1 + α2 + α4

)

.

References

[1] D. Duverneya and I. Shiokawa, On series involving Fibonacci and Lucas numbers I, AIP Conf. Proc. 976,
March 5-7, 2007, Kyoto (Japan), Editor Takao Komatsu, (2008), 62–76.

Evaluate a Lucas Sum

B-1153 Proposed by Ángel Plaza and Sergio Falcón, Universidad de Las Palmas
de Gran Canaria, Spain.
(Vol. 52.3, August 2014)

For any positive integer number k, the k-Fibonacci and k-Lucas sequences, {Fk,n}n∈N and
{Lk,n}n∈N, both are defined recurrently by un+1 = kun+un−1 for n ≥ 1 with respective initial
conditions Fk,0 = 0, Fk,1 = 1, and Lk,0 = 2, Lk,1 = k. Prove that

n
∑

i=0

(

2

k

)i

Lk,i = k

(

2

k

)n+1

Fk,n+1.

Solution by Kenneth B. Davenport, Dallas, PA.

AUGUST 2015 275



THE FIBONACCI QUARTERLY

First, we point out that this result appears to be a generalization of identity 23 in [1],
n
∑

i=0

2iLi = 2n+1Fn+1 (1)

Thus, for k = 1 in the stated identity, (1) can be easily derived. In view of this, it may be
better to solve

n
∑

i=0

xiLk,i (2)

for a general x value and then let x = 2

k
.

In the Binet form, it is known that k-Fibonacci and k-Lucas sequences satisfy

Fk,n =
an − βn

a− β
;Lk,n = an + βn

where

a =
k +

√
k2 + 4

2
;β =

k −
√
k2 + 4

2
.

So, (2) is written
n
∑

i=0

xi(ai + βi) =

n
∑

i=0

[(ax)i + (βx)i]. (3)

And we know that the sum of a geometric ratio, say r is
n
∑

i=0

ri =
1− rn+1

1− r
. (4)

Using (4), we see that (3) is
1− (ax)n+1

1− ax
+

1− (βx)n+1

1− βx
.

Combining the fractions and noting aβ = −1; a+ β = k; we get

2− kx− (ax)n(ax+ x2)− (βx)n(βx+ x2)

(1− kx− x2)
.

Now, letting x = 2

k
we have, after some simplification,

−
(

2

k

)n
[

an ·
(

k +
√
k2 + 4

2
· 2
k
+

4

k2

)

− βn ·
(

k −
√
k2 + 4

2
· 2
k
+

4

k2

)]

and in the denominator we would have

−
(

k2 + 4

k2

)

canceling the minus signs and factoring out
√
k2 + 4 from the numerator then yields

(

2

k

)n

·
(

an(k +
√
k2 + 4) + βn(−k +

√
k2 + 4)√

k2 + 4

)

.

So finally we can see this is now

k

(

2

k

)n+1

Fk,n+1

thereby verifying the stated identity.
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References

[1] A. T. Benjamin and J. J. Quinn, Proofs That Really Count. The Art of Combinatorial Proof, Mathematical
Assn. of America, Washington, DC, 2003.

Also solved by G. C. Greubel, Russell Jay Hendel, Harris Kwong, N. Padmaja
(student), and the proposer.

Sum . . . of Products . . . of Squares . . .

B-1154 Proposed by Steve Edwards, Southern Polytechnic State University,
Marietta, GA.
(Vol. 52.3, August 2014)

Find a closed form expression for
n
∑

i=0

L2
iL

2
i+1.

Solution by Kaige M. Lindberg, Charleston, SC.

From [1, p. 90 Identity 63] we know that LnLn+1 = L2n+1 + (−1)n. From here we can see
that (LnLn+1)

2 = (L2n+1 + (−1)n)2. Therefore,
∑n

i=0
(LiLi+1)

2 =
∑n

i=0
(L2i+1 + (−1)i)2. Now

it is easy to see that
n
∑

i=0

L2
iL

2
i+1 =

n
∑

i=0

L2
2i+1 + 2

n
∑

i=0

L2i+1(−1)i +
n
∑

i=0

1. (1)

We find the closed forms for the three summations which make up the right side of (1).
The rightmost sum is, obviously,

∑n
i=0

1 = n + 1. From [2, p. 32 Identity 54] it is easy to
see that

∑n
i=0

L2
2i+1 = F4n+4 − 2n − 2. And from [2, p. 32 Identity 55] it is also easy to see

that
∑n

i=0
L2i+1(−1)i = F2n+2(−1)n. By substituting the closed forms of these three different

summations into (1) we get
n
∑

i=0

L2
iL

2
i+1 = F4n+4 + 2F2n+2(−1)n − n− 1.

References

[1] T. Koshy, Fibonacci and Lucas Numbers wth Applications, John Wiley, New York, 2001.
[2] A. T. Benjamin and J. J. Quinn, Proofs That Really Count. The Art of Combinatorial Proof, Mathematical

Assn. of America, Washington, DC, 2003.

Also solved by Adnan Ali (student), Kenneth B. Davenport, Dmitry Fleischman,
G. C. Greubel, Russell J. Hendel, Harris Kwong, Kathleen Lewis, Hideyuki Oht-
suka, Ángel Plaza, Ashley Reavis, Jason L. Smith, and the proposer.

Evaluate Two More Infinite Series

B-1155 Proposed by Hideyuki Ohtsuka, Saitama, Japan.
(Vol. 52.3, August 2014)
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Prove each of the following:

(i)
∞
∑

k=1

L2k+1

F3·2k
=

5

4
,

(ii)
∞
∑

k=1

F 2

2k−1

L2

2k
− 1

=
3

20
.

Solution by Harris Kwong, SUNY Fredonia, Fredonia, NY.

We first derive three preliminary results. It follows from LmLn = Lm+n + (−1)nLm−n and
FmFn = Lm+n − (−1)nLm−n that for k ≥ 2,

L3·2k−1L2k−1 = L2k+1 + L2k ,

5F 2

2k−1 = L2k − 2,

L2

2k−1 = L2k + 2.

(i) Since FmLm = F2m, we find for k ≥ 2,

L2k+1

F3·2k
=

L3·2k−1L2k−1 − L2k

F3·2k
=

L2k−1

F3·2k−1

− L2k

F3·2k
.

Its telescoping nature implies that
∞
∑

k=1

L2k+1

F3·2k
=

L4

F6

+

∞
∑

k=2

(

L2k−1

F3·2k−1

− L2k

F3·2k

)

=
L4

F6

+
L2

F6

=
5

4
.

(ii) We find for k ≥ 2,

5F 2

2k−1(L
2

2k−1 − 1) = (L2k − 2)(L2k + 1)

= L2

2k
− L2k − 2

= L2

2k
− L2

2k−1 .

Thus,

F 2

2k−1

L2

2k
− 1

=
L2

2k
− L2

2k−1

5(L2

2k−1 − 1)(L2

2k
− 1)

=
1

5

(

1

L2

2k−1 − 1
− 1

L2

2k
− 1

)

,

which is again telescoping. Consequently, similar to (i), we find
∞
∑

k=1

F 2

2k−1

L2

2k
− 1

=
F 2
1

L2
2
− 1

+
1

5
· 1

L2
2
− 1

=
3

20
.

Also solved by Kenneth B. Davenport, Dmitry Fleischman, G. C. Greubel, Russell
J. Hendel, Ángel Plaza, and the proposer.

We would like to acknowledge belatedly Adnan Ali for solving B-1146, Dmitry Fleischman
for solving B-1142, and Ángel Plaza for solving B-1132.
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