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PROBLEMS PROPOSED IN THIS ISSUE

H-685 Proposed by N. Gauthier, Kingston, ON
For k a positive integer prove the following identities:

a)
k∑

m=1

(
2k −m− 1

k − 1

)
(F2m + Fm) = F3k;

b)
k∑

m=1

m

k

(
2k −m− 1

k − 1

)
(F2m+2 − Fm+1) = F3k;

c)
k∑

m=1

2m

22k

(
2k −m− 1

k − 1

)
(F2m + (−1)m+1Fm) = Fk;

d)
k∑

m=1

2mm

22k+1k

(
2k −m− 1

k − 1

)
(F2m+2 + (−1)m+1Fm+1) = F3k.

H-686 Proposed by José Luis Dı́az-Barero, Barcelona, Spain
Let n be a positive integer. Compute∑

1≤i<j≤n

FiFj(Fi − Fj)
2.

H-687 Proposed by G. C. Greubel, Newport News, VA
i) Show that

∞∑
n=0

[
1

5n + 1
− β2

5n + 3
− β4

5n + 4
− β5

5n + 5

]
(−β5)n = π

(
α6

55

) 1
4

.

ii) From the series in i) and H-669 (corrected) show that

ii.1)
∞∑

n=0

[
1

5n + 1
+

1

5n + 2
− β2

5n + 4
− β4

5n + 5

] (−β5
)n

= π

(
α2

5

) 5
4

;

184 VOLUME 48, NUMBER 2



ADVANCED PROBLEMS AND SOLUTIONS

ii.2)
∞∑

n=0

[
α3

5n + 2
+

α

5n + 3
− 1

5n + 4
− 1

5n + 5

] (−β5
)n

= π

(
α14

55

) 1
4

;

ii.3)
∞∑

n=0

[
1

5n + 1
+

β2

5n + 2
+

β3

5n + 3
+

β3

5n + 4

]
(−β5)n = 2π

(
α2

55

) 1
4

.

H-688 Proposed by Apoloniusz Tyszka, Krakow, Poland
Let

En = {xi = 1, xi + xj = xk, xi · xj = xk : i, j, k ∈ {1, 2, . . . , n}}.
Prove or disprove: If a system S ⊆ En has only finitely many integer solutions (x1, . . . , xn),

then all such integer solutions satisfy |xi| ≤ 22n−1
for i = 1, . . . , n.

SOLUTIONS

Some kth order Fibonacci Limits

H-668 Proposed by A. Cusumano, Great Neck, NY
(Vol. 46, No. 1, February 2008)

For each k ≥ 2, let (F
(k)
n )n≥1 be the kth order linear recurrence given by

F
(k)
n+k =

k−1∑
i=0

F
(k)
n+i, for all n ≥ 1,

with F
(k)
n = 1 for n = 1, . . . , k. Prove the following:

(a) Rk = limn→∞ F
(k)
n+1/F

(k)
n exists for all k ≥ 1.

(b) limk→∞ Rk = 2.
(c) limk→∞(Rk+1 −Rk)/(Rk+2 −Rk+1) = 2.

Editor’s comment. After this problem appeared in print, some solvers noted that this
is the same as Problem H-197 proposed and solved by Lawrence Somer in the Fibonacci
Quarterly of 1972 (solution in 1974). Problem H-197 is more general in the sense that the

first k terms of the kth-order linear recurrence (F
(k)
n )n≥1 were not necessarily assumed to be

1. The editor apologizes for this oversight.

Solved by Paul S. Bruckman and jointly by Ángel Plaza, Sergio Falcón and José
M. Pacheco.

The Bilateral Binomial Theorem and Fibonacci Numbers

H-669 Proposed by G. C. Greubel, Newport News, VA
(Vol. 46, No. 2, May 2008)

Show that
∞∑

n=0

[
1

5n + 1
+

2

5n + 2
+

β2

5n + 3
+

β

5n + 4
− β2

5n + 5

]
(−1)nβ5n = π

(
α2

5

) 3
4

.

Solution by the proposer
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We start with the series

S(θ) =
∞∑

n=1

cos(4n− 3)θ

n
(2 cos θ)n. (1)

If we write it out term by term, we get

S(θ) =
1

1
cos θ (2 cos θ)1 +

1

2
cos 5θ (2 cos θ)2 +

1

3
cos 9θ (2 cos θ)3

+
1

4
cos 13θ (2 cos θ)4 +

1

5
cos 17θ (2 cos θ)5 + · · · .

If we let θ = 2π/5, we are then led to

S

(
2π

5

)
=

∞∑
n=0

[
β cos

(
2π
5

)

5n + 1
− β2

5n + 2
− β3 cos

(
3π
5

)

5n + 3
+

β4 cos
(

π
5

)

5n + 4
+

β5 cos
(

4π
5

)

5n + 5

]
(−1)nβ5n.

Inserting the values

cos
(π

5

)
=

α

2
, cos

(
2π

5

)
= −β

2
, cos

(
3π

5

)
=

β

2
, cos

(
4π

5

)
= −α

2
,

in the above series, we get

2α2S

(
2π

5

)
=

∞∑
n=0

[
1

5n + 1
+

2

5n + 2
+

β2

5n + 3
+

β

5n + 4
− β2

5n + 5

]
(−1)nβ5n, (2)

and we recognize in the right hand side the series that we want to evaluate.
Alternatively, the series (1) may be expanded into

S(θ) = cos(3θ)
∞∑

n=1

(2 cos θ)n

n
cos(4nθ) + sin(3θ)

∞∑
n=1

(2 cos θ)n

n
sin(4nθ). (3)

In order to evaluate this last series, we consider the series expansion of the natural logarithm
in the following way. Since

− ln(1− x) =
∞∑

n=1

xn

n
,

by letting x = reiθ with r ∈ (0, 1), we get

∞∑
n=1

rn

n
einθ = − ln(1− reiθ) = − ln(1− r cos θ − ir sin θ)

= −1

2
ln(1− 2r cos θ + r2) + i tan−1

(
r sin θ

1− r cos θ

)
.

Equating the real and complex parts of both sides yields the series identities:
∞∑

n=1

rn

n
cos nθ = −1

2
ln(1− 2r cos θ + r2); (4)

∞∑
n=1

rn

n
sin nθ = tan−1

(
r sin θ

1− r cos θ

)
. (5)
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Now letting θ = 4φ and r = 2 cos φ in equations (4), we obtain
∞∑

n=1

cos 4nφ

n
(2 cos φ)n = −1

2
ln(1− 4 cos φ cos 4φ + 4 cos2 φ); (6)

∞∑
n=1

sin 4nφ

n
(2 cos φ)n = tan−1

(
2 cos φ sin 4φ

1− 2 cos φ cos 4φ

)
. (7)

When φ = 2π/5, then the cosine series reduces to
∞∑

n=1

(−β)n

n
cos

(
8nπ

5

)
= −1

2
ln

(
1− 4 cos

(
2π

5

)
cos

(
8π

5

)
+ 4 cos2

(
2π

5

))

= −1

2
ln

(
1− 4

(−β

2

)(
−β

2

)
+ 4

(
−β

2

)2
)

= −1

2
ln(1− β2 + β2) = −1

2
ln(1) = 0,

while the sine series reduces to
∞∑

n=1

(−β)n

n
sin

(
8nπ

n

)
= tan−1

( −2β

2− β2
sin

(
8π

5

))
= tan−1

(
β√
α
· 5 1

4

)
,

where in the above we used the fact that sin(8π/5) = −1
2

√√
5α.

Thus, letting θ = 2π/5 in (3), we obtain

S

(
2π

5

)
= cos

6π

5

∞∑
n=1

(−β)n

n
cos

8nπ

5
+ sin

6π

5

∞∑
n=1

(−β)n

n
sin

8π

5

= sin
6π

5
· tan−1

(
β√
α
· 5 1

4

)
= −1

2

√
−β5

1
4 tan−1

(
β√
α
· 5 1

4

)
, (8)

where we used the fact that sin(6π/5) = −1
2

√−β · 5 1
4 . Since sin(π/5) = −1

2
· 51/4 · √−β and

cos(π/5) = α
2
, we get that tan (−π/5) = 51/4 β√

α
. With this calculation, in (8) we get

S

(
2π

5

)
= −1

2

√
−β5

1
4 ·

(
−π

5

)
=

π

2
√

α · 53/4
.

Now the desired relation follows from the last relation above and (2).

Also solved by Paul S. Bruckman and Kenneth B. Davenport.

Sums of Fibonomial Coefficients

H-670 Proposed by P. Bruckman, Sointula, Canada
(Vol. 46, No. 2, May 2008)

Let
[
n
k

]
denote the standard Fibonomial coefficient FnFn−1 · · ·Fn−k+1/(F1F2 · · ·Fk).

(a) Define the following sums:

An =
n∑

k=0

(−1)k(k+1)/2

[
n

k

]
Fk, Bn =

n∑

k=0

(−1)k(k−1)/2

[
n

k

]
.

Prove that for n ≥ 1, An = −FnBn−1.
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(b) Define

Cn =
n∑

k=0

(−1)k(k+1)/2

[
n

k

]
Lk.

Prove that Cn = −(Ln − 2)Bn−1.

Solution by Harris Kwong, SUNY Fredonia, Fredonia, NY

(a) From[
n

k

]
=

FnFn−1 · · ·Fn−k+1

F1F2 · · ·Fk

· Fk = Fn · Fn−1Fn−2 · · ·Fn−k+1

F1F2 · · ·Fk−1

= Fn

[
n− 1

k − 1

]
,

we obtain

An = Fn

n∑

k=0

(−1)k(k+1)/2

[
n− 1

k − 1

]
.

Since
[
n−1
−1

]
= 0, this sum in effect starts with k = 1. By setting j = k − 1, we find

n∑

k=0

(−1)k(k+1)/2

[
n− 1

k − 1

]
=

n−1∑
j=0

(−1)(j+1)(j+2)/2

[
n− 1

j

]
= −

n−1∑
j=0

(−1)j(j−1)/2

[
n− 1

j

]
= −Bn−1,

which proves that An = −FnBn−1.

(b) The identity FnLk = FkLn + 2(−1)kFn−k yields[
n

k

]
Lk =

Fn−1Fn−2 · · ·Fn−k+1

F1F2 · · ·Fk

[FkLn + 2(−1)kFn−k] =

[
n− 1

k − 1

]
Ln + 2(−1)k

[
n− 1

k

]
.

Hence,

Cn = Ln

n∑

k=0

(−1)k(k+1)/2

[
n− 1

k − 1

]
+ 2

n∑

k=0

(−1)k(k+3)/2

[
n− 1

k

]
.

The first sum is the same sum we obtained in the proof of part (a), and we can terminate
the second sum at k = n− 1 because

[
n−1

n

]
= 0. Therefore,

Cn = −LnBn−1 + 2
n−1∑

k=0

(−1)k(k+3)/2

[
n− 1

k

]
= −LnBn−1 + 2

n−1∑

k=0

(−1)k(k−1)/2

[
n− 1

k

]

= −LnBn−1 + 2Bn−1,

which completes the proof of (b).

Also solved by H. J. Seiffert and the proposer.

Sums of Fibonacci and Lucas Polynomials

H-671 Proposed by G. C. Greubel, Newport News, VA
(Vol. 46, No. 2, May 2008)

Let φn(x, y) be the bi-variate Fibonacci and Lucas polynomials. Find expansions for
∞∑

n=0

(
n + m

n

)
φn+p(x, y),
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in the form

P (x, y) +
λ∑

r=0

(
λ

r

)
Qr(x, y),

where P (x, y) and Qr(x, y) are general polynomials and λ is given by: (A) m + 1, (B) p.

Solution by the proposer

Let

S1 = S1(x, y) =
∞∑

n=0

(
n + m

n

)
Fn+p(x, y). (9)

By using the fact that
∞∑

n=0

(
n + m

n

)
tn = (1− t)−m−1,

we have

S1 =

(
1

α− β

) [
αp(1− α)−m−1 − βp(1− β)−m−1

]
, (10)

where α = α(x, y) = 1
2
(x +

√
x2 + 4y) and β = β(x, y) = 1

2
(x −

√
x2 + 4y). The term

1− α(x, y) can be evaluated in the following way:

1− α(x, y) = 1− 1

2
(x +

√
x2 + 4y) = −1

2
(x− 2 +

√
x2 + 4y)

= −1

2
(x− 2 +

√
(x− 2)2 + 4(y + x− 1)) = −α(x− 2, y + x− 1). (11)

A similar relation holds for 1− β(x, y) and is given by

1− β(x, y) = −β(x− 2, y + x− 1). (12)

With this, we have from equations (10) – (12)

S1 =

(
(−1)m+1

α− β

) [
αp(x, y)α−m−1(a, b)− βp(x, y)β−m−1(a, b)

]
, (13)

where a = x− 2 and b = y + x− 1. By using the relation α(x, y)β(x, y) = −y, equation (13)
becomes

S1 =

(
(y + x− 1)−m−1

√
x2 + 4y

)
[
αp(x, y)βm+1(a, b)− βp(x, y)αm+1(a, b)

]
. (14)

This last expression can be transformed as

Φ = αp(x, y)βm+1(a, b)− βp(x, y)αm+1(a, b)

= (αp(x, y)− βp(x, y))
(
αm+1(a, b) + βm+1(a, b)

)

− [
αp(x, y)αm+1(a, b)− βp(x, y)βm+1(a, b)

]
.

Let the bracketed terms be given by σ. With this is mind our expression (14) is seen to be

S1 = (y + x− 1)−m−1Fp(x, y)Lm+1(a, b)−
(

(y + x− 1)−m−1

√
x2 + 4y

)
σ. (15)
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The terms in σ can be expanded, with dependence upon m, in the following way. Consider
the term αp(x, y)αm+1(a, b). This takes the form

αp(x, y)αm+1(a, b) = αp(x, y)(−1)m+1 (1− α(x, y))m+1 =
m+1∑
r=0

(
m + 1

r

)
(−1)r+m+1αp+r(x, y).

A similar expression holds for the term involving βp(x, y)βm+1(a, b). Combining these results
we have

σ =
√

x2 + 4y
m+1∑
r=0

(
m + 1

r

)
(−1)r+m+1Fp+r(x, y). (16)

Using this expansion in equation (15), with the use of equations (16) and (9), provides the
desired result

∞∑
n=0

(
n + m

n

)
Fn+p(x, y)

= µ(x, y)

{
Fp(x, y)Lm+1(x− 2, y + x− 1) +

m+1∑
r=0

(
m + 1

r

)
(−1)r+mFp+r(x, y)

}
,

where µ(x, y) = (y + x − 1)−m−1. This expansion depends on the value of m. The ex-
pansion that depends upon p can be derived by reconsidering the terms in σ. Consider
αp(x, y)αm+1(a, b) in the following way:

αp(x, y)αm+1(a, b) = αm+1(a, b) (1 + α(a, b))p =

p∑
r=0

(
p

r

)
αm+r+1(a, b).

Again a similar expansion for the term βp(x, y)βm+1(a, b) can be obtained. With the new
expansions σ becomes

σ = αp(x, y)αm+1(a, b)− βp(x, y)βm+1(a, b) =

p∑
r=0

(
p

r

) [
αm+r+1(a, b)− βm+r+1(a, b)

]

=
√

x2 + 4y ·
p∑

r=0

(
p

r

)
Fm+r+1(a, b). (17)

By using equations (9), (15), and (17), we have the result

∞∑
n=0

(
n + m

n

)
Fn+p(x, y)

= µ(x, y)

{
Fp(x, y)Lm+1(x− 2, y + x− 1)−

p∑
r=0

(
p

r

)
Fm+r+1(x− 2, y + x− 1)

}
. (18)
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By following the same pattern as given above the results for the bi-variate Lucas polyno-
mials are given by

∞∑
n=0

(
n + m

n

)
Ln+p(x, y)

= µ(x, y)

[
Lp(x, y)Lm+1(x− 2, y + x− 1) +

m+1∑
r=0

(
m + 1

r

)
(−1)r+mLp+r(x, y)

]
,

and
∞∑

n=0

(
n + m

n

)
Ln+p(x, y)

= µ(x, y)

[
Lp(x, y)Lm+1(x− 2, y + x− 1)−

p∑
r=0

(
p

r

)
Lm+r+1(x− 2, y + x− 1)

]
.

In general, one can state:
∞∑

n=0

(
n + m

n

)
φn+p(x, y)

= µ(x, y)

[
φp(x, y)Lm+1(x− 2, y + x− 1) +

m+1∑
r=0

(
m + 1

r

)
(−1)r+mφp+r(x, y)

]
,

and
∞∑

n=0

(
n + m

n

)
φn+p(x, y)

= µ(x, y)

[
φp(x, y)Lm+1(x− 2, y + x− 1)−

p∑
r=0

(
p

r

)
φm+r+1(x− 2, y + x− 1)

]
.

Also solved by Paul S. Bruckman.

PLEASE SEND IN PROPOSALS!
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