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PROBLEMS PROPOSED IN THIS ISSUE

H-769 Proposed by D. M. Bătineţu-Giurgiu, Bucharest and Neculai Stanciu,
Buzău, Romania.

Prove that the inequality
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holds for all positive integers n.

H-770 Proposed by H. Ohtsuka, Saitama, Japan.

For an integer n ≥ 0, find a closed form expression for the sum

S(n) :=
n
∑
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1
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,

where c 6= −L2k for 0 ≤ k ≤ n.

H-771 Proposed by D. M. Bătineţu-Giurgiu, Bucharest and Neculai Stanciu,
Buzău, Romania.

Let m > 0 and Γ : (0,∞) → (0,∞) be the gamma function. Calculate
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H-772 Proposed by D. M. Bătineţu-Giurgiu, Bucharest and Neculai Stanciu,
Buzău, Romania.

If ABC is a nonisosceles triangle then prove that
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Here, a, b, c, r are the lengths of the sides and the radius of the inscribed circle of the triangle
ABC, respectively.

SOLUTIONS

On Sums of Squares of Fibonomial Coefficients

H-738 Proposed by H. Ohtsuka, Saitama, Japan.
(Vol. 51, No. 2, May 2013)

Let

(

n

k

)

F

denote the Fibonomial coefficient. For n ≥ 1, prove that

(i)
2n−1
∑

k=0

L2
k

(

2n− 1

k

)2

F

=
L4n−1 + 1

L4n−1 − 1

2n
∑

k=0

(

2n

k

)2

F

,

(ii)
∑

a+b=2n
a,b>0

LaLb

(

2n− 1

a

)

F

(

2n− 1

b

)

F

=
L4n−1 − 3

L4n−1 − 1

2n
∑

k=0

(

2n

k

)2

F

.

Solution by the proposer
(i) The following identities are known (see [2]):

(A) F2n = FnLn,
(B) L2

n = 5F 2
n + 4(−1)n,

(C) LnLm = Ln+m + (−1)mLn−m,
(D) 5FnFm = Ln+m − (−1)mLn−m.
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It was shown in [1] that
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(ii) The following identity is known (see [3]):
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Squaring both sides of the above identity, we have
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Using this identity, we have
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Therefore, putting m = 2n, we have
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More Sums of Squares of Fibonomial Coefficients

H-739 Proposed by Hideyuki Ohtsuka, Saitama, Japan.
(Vol. 51, No. 3, August 2013)

Define the generalized Fibonomial coefficient
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Solution by E. Kılıç and I. Akkuş, Turkey.

Our way is to mechanically compute the desired sums by the qZeilberger algorithm (qZeil-
berger’s own version, which is a Mathematica program).

The Gaussian q-binomial coefficient
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is defined, for all real n and integers m withm ≥ 0,
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and as zero otherwise, where

(a; q)n = (1− a)(1 − aq) · · · (1− aqn−1).
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The Binet form is
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with q = β/α = −α−2. The link between the Fibonomial and Gaussian q-binomial coefficients
is
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If we convert the claimed identity into q-notation, then we rewrite its LHS and RHS in
terms of q-binomials as
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The algorithm gives us the recurrence relation for both LHS and RHS :

SUM[n]=
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1− q2nm
SUM[n− 1] .

Since LHS(0)=RHS(0)= 1, we get that they are equal.

Also solved by the proposer.

Counting Dominating Sets in Paths

H-740 Proposed by Saeid Alikhani, Yazd, Iran and Emeric Deutsch, Brooklyn,
NY. (Vol. 51, No. 3, August 2013)

Given a simple graph G with vertex set V , a dominating set of G is any subset S of V
such that every vertex in V \S is adjacent to at least one vertex in S. Find the number of
dominating sets of the path Pn with n vertices.

Solution by Harris Kwong, Fredonia, NY.

Let dn denote the number of dominating sets of Pn. Label the vertices of Pn as v1, v2, . . . , vn
such that the vertices vi and vi+1 are adjacent for 1 ≤ i ≤ n − 1. It is clear that d2 = 3,
because P2 has three dominating sets: {v1}, {v2}, and {v1, v2}.

Consider n ≥ 3. A dominating set S may or may not contain vn. If it does, then S \ {vn}
is a dominating set of Pn−1. Conversely, any dominating set of Pn−1 can be expanded to a
dominating set of Pn by including vn in it. Hence, there are dn−1 choices for S in this case.

If S does not contain vn, it must contain vn−1 so as to dominate vn. Then S \ {vn−1}
is a dominating set of Pn−2. Conversely, any dominating set of Pn−2 can be expanded to a
dominating set of Pn that also contains vn−1 but not vn by adding vn−1 to it. Thus, there are
dn−2 choices for S in this case.
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We have just proved that dn = dn−1+ dn−2 for n ≥ 3. When n = 3, after we remove v2 and
v3 in the second case, we are left with only one vertex v1, which may or may not be contained
in S. In this regard, we may define d1 = 2. Along with d2 = 3, we see that dn = Fn+2.

Also solved by the proposers.

An Application of the AM-GM Inequality

H-741 Proposed by Charlie Cook, Sumter, South Carolina.
(Vol. 51, No. 3, August 2013)

If n ≥ 2 and m ≥ 1, then

m(Ln − Fn)(LnFn)
(m−1)/2 ≤ Lm

n − Fm
n ,

where Ln and Fn are the Lucas and Fibonacci numbers, respectively.

Solution by Ángel Plaza, Las Palmas, Spain.

The proposed inequality is a particular case of the following more general inequality:
If 0 < y ≤ x and m ≥ 1, then m(x− y)(xy)(m−1)/2 ≤ xm − ym.
Proof. Last inequality may be written as

m(xy)(m−1)/2 ≤ xm−1 + · · ·+ xm−1−jyj + · · ·+ ym−1

(xy)(m−1)/2 ≤ xm−1 + · · ·+ xm−1−jyj + · · ·+ ym−1

m
.

which follows immediately by the AM-GM inequality.

Also solved by Kenneth B. Davenport, Dmitry Fleischman, Robinson Higuita,
Harris Kwong, Hideyuki Ohtsuka, and the proposer.

Errata: In problem H-765, the right-hand side of (iii) should be “(LnLn+1 − 2)2” instead
of “(LnLn+1 − 1)2”.

The published solution to H-737 works for primes p ≥ 5, but not for p = 3. Indeed, when
p is 3, Fp is not necessarily prime to Lmp and is not prime to Lp. Here is a fix from the same
solver.

For p = 3, we have
(3n−1
3−1

)

F
= F3n−1F3n−2 := an, say. Then an is a linear combination

of α6n, β6n and (−1)n, where α and β are the zeros of x2 − x − 1. Thus, (an) is a linear
recurrence with characteristic polynomial (x2 − L6x + (αβ)6)(x + 1), which modulo 16 is
x3 − x2 − x+ 1. Therefore, we may prove that an ≡ (−1)n−1 (mod F 2

3L3 = 16) by induction
as an+3 ≡ an+2 + an+1 − an (mod 16).
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