A PRIMER FOR THE FIBONACCI NUMBERS — PART IV
V. E. HOGGATT, JR. AND I. D. RUGGLES, SAN JOSE STATE COLLEGE

1. INTRODUCTION

Inthe primer, Part III, it was noted that if V = (x,y) is atwo-dimensional

vector and A is a 2 by 2 matrix, A = Zl g , then V' = AV is atwo-
dimensional vector, V' = (x',y') = (ax+ by, cx+ dy). Here, V and conse-

quently V', are expressed as column vectors. The matrix A is said to trans-
form, or map, the vector V onto the vector V'. The matrix A is called the

mapping matrix or transformation matrix.
2. SOME MAPPING MATRICES

The zero matrix, Z = (8 8) , maps every vector V onto the zero
vector ¢ = (0,0).

The identity matrix, I = (é (1)> maps every vector V onto itself; that
is, IV =V,
The matrix B = (; ;) maps vectors V = (k,-k), (k any realnumber),

onto the zero vector ¢ Such a mapping as determined by B is called a many-
to-one mapping.

If the only vector mapped onto ¢ is the vector ¢ itself, the mapping is
a one-to-one mapping. A matrix A determines a one-to-one mapping of two-
dimensional vectors onto two-dimensional vectors if, and only if, det A * 0.
If det A # 0, for each vector U, there exists a vector V such that AV =
U. Note, however, that for matrix B above, B(;} = (2§:§y> There is
no vector V such that BV = (0,1).

3. GEOMETRIC INTERPRETATIONS OF 2x2 MATRICES
AND 2-DIMENSIONAL VECTORS

As in Primer III, the vector V = (x,y) is interpreted as a point in a rec-
tangular coordinate system. Thus the geometric concepts of length, direction,
slope and angle are associated with the vector V.

A non-zero scalar multiple of the identity matrix, kI, maps the vector
U = (a,b) onto the vector V = (ka,kb). The length of V, |V|, is equal to |k|
| Ul. There is no change in slopebut if k < 0 the sense or direction is reversed.
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. 01
The matrix (1 0

to the line through the origin with slope one. Note that different vectors may

) maps a vector onto the reflection vector with respect

be rotated through different angles!

/

The matrix 0) preserves the first component of a vector while an-

(0 0
nihilating the second component. Every vector U = (x,y) is mapped into a

vector on the x-axis.

The matrix R = (cps 6 -sin 0
sin 6 cos 6

angle ¢ (theta), in a counterclockwise direction if theta is a positive angle.

)rotates all vectors through the same

There is no change in length, This seems to contradict the notion of a matrix
having vectors whose slopes are not changed but in this casethe characteristic

values are complex; thus, there are no real characteristic vectors.
4. THE CHARACTERISTIC VECTORS OF THE Q-MATRIX

The Q matrix ( i (1)) does not generally preserve the length of a vec-
tor U = (x,y). Also, different vectors are in general rotated through different
angles.

The characteristic equation of the @ matrix is

with roots

which are the characteristic roots, or eigenvalues, for Q.

To solve for a pair of corresponding characteristic vectors consider

(18)G) = 2(5) v w0

Then
L-Nx+y =0
Thus, a pair of characteristic vectors are
X1 = O\IX,X) s |X1| + 0o ,
with slope )
NG -1
my = 5 and X, = (\x,x), | Xo| £ 0 ,

' with slope

m = - (%)
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What happens whenthe matrix Q? is applied tothe characteristic vectors

X, and X, of matrix Q? Since
QX = QAX) = Q\Xy) = Z\QX; = N\X ,

clearly X, is a characteristic vector of the matrix Q? as well as a character-
istic vector of matrix @. The characteristic roots of Q? arethe squares of the
characteristic roots of matrix Q. In general if ) and \, are the character-
istic roots of @ then ﬁ and )\I; are the characteristic roots of Q". But the

N, . n .
characteristic equation for Q" is

N\ - (F + F

- F2y =
1 gt E L F F2) = 0

n+tl n-1 n

; - _F2 = (1B 2 = 5R2
Recalling that Ln = Fn+1 + Fn—l’ Fn+1 Fn—l F][1 = (-1)7, and Ln = 5Fn+

4(—1)n, it follows that, since »; = o = (1 + N5)/2 and Ao =B =(1- N5)/2,

o' =V = @ +N5F )/2 and 7 =) = (@ - \5F )/2

5. FIBONACCI AND LUCAS VECTORS AND THE Q@ MATRIX

Let Un = (Fn+1’Fn) gnd Vn = (Ln+1’Ln) be denoted as Fibonacci and

Lucas vectors, respectively. We note
n+l

and |Vn|2 =LY+ L2= (F2 + (1) 4+ 5F2

2 = P2 2
IUn| - Fn+1 +F n+1 n

n- F2r1+1

+ (1)) = 5(FL +FY = 5

F2n+1'
It is well known that the slopes of the vectors Un and Vn (the ratios
Fn/ i and Ln/ L approachthe slope, (N5 - 1)/2, of the characteristic

vector, Xj.

n+1)

Since Qan = Qm+n, it is easy to verify that

Fm+1Fn+1 * Fan = Fm+n+1

by equating elements in the upper left in the above matrix equation. In a simi-

lar manner it follows that

FreiFoee © FiFuer = P
Fm+1Fn * Fan~1 - Fm+n
Adding these two equations and using Ln 1= Fn ot Fn it follows that

F L + F L = L
m n

m+1 n+1 m+n+1
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From the above identities it is easy to verify that

+1
Q“VO=QV=V ,

n n+l
Q"luy = QU =T,
QnVm = Vm+n+1 ’
QnUm = Um+n+1

6. A SPECIAL MATRIX

1 2
Let P = ( ), then from

2 -1
Ln+1 = Fn+1 + 2 Fn s Ln = 2Fn+1 - Frl ,
5F 41 7 Lpyp T 2Ly B5F) = 2L, - Ly
it follows that
PU, = (Fppq ¥ 2F, 2F 0 - F) =V,
PV, = (L, * 2L, 2L ;- L) =50
Also
PQn 1 2 Fn+1 Fn _ Ln+1 Ln
12 -1 F F " VL. L
n n-1 n n-1
Pan - 5Qn
L L
D( - n>= pP)D@") = 51"}
L L .
' n-1

We now discuss two geometric properties of matrix P, Let U = (xy),
ulz = x2+y2 & 0. '

PU = (x + 2y, 2x - y) |PU%2 = 5&x2 + y?) = 5|u]2.

Thus matrix P magnifies each vector length by ~/5.

If tano = y/x, wesay a = Ta.n_1 y/x, read "« isan angle whose tan-
gentis y/x." Let tano = y/x and tan B = (2x - y)/ & + 2y). From tan (a+p)
= (tan o + tan B)/(1 - tan o tan f) we may now see what effect P has on the

slope of vector U = (x,¥).
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Now (recalling x®+y2 4 0 says x and y are not both zero at the same
time. )

- - - 2 2
tan(a+3)=tan<Tan1¥-+Tan12X Y)=2(X+YJ
X X+2y X2+y2

Thus, since x2+y2 + 0, then

tan @+ B) = 2 .

What does this mean? Consider two vectors A and B, the first inclined at
an angle o with the positive x-axis and the second inclined at an angle 3 with
the positive x-axis and the angles are measuredpositively inthe counterclock-
wise direction. The angle bisector, 3, of the angle between vectors A and
B is such that @ - ¥ = ¥- B whether or not o is greater than B or the other

way around. Solving for ¥ yields
b = (a+ p)a.

Thus y is the arithmetic average of o and B. Also we note that o + 3 = 2¢.

The tangent of double the angle is given by

tan 29 = (2 tan®)/(1 - tan®y) .

Let
N5 -1

tany= —5=

then it is an easy exercise in algebra to find tan 2y = 2, but tan (o + B) =2,
therefore we would like to conclude that the angle bisector between vectors U
and PU is precisely one whose slope is ('\/:5 - 1)/2, but this is the slope of
Xy, the characteristic vector of @. Can you show that X, is also a character-
istic vector of P?

We have shown

Theorem 1, The matrix P = (
vector PU such that

1

° j) maps a vector U = (x,y) into a

@) lpay| = Vs |Ul

and
(2) The angle bisector of the angle between the vector U and the vector PU

is X, a characteristic vector of @ and P. Thus Matrix P reflects vector

U across vector Xj.
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Theorem 2, The vectors U, and Vn are equally inclined to the vector
X; whose slope is (N5 - 1)/2.

Corollary. The vectors Vn are mapped into vectors N5 Un by P and
the vectors Un are mapped into Vn by P.

7. SOME INTERESTING ANGLES

An interesting theorem is

Theorem 3.

L n
Tan Ta.n_1 Ln/Ln+1 - Tan—1 Ln+1 = -I-‘,L-—l-)—
n+2 2n+2
; n+1
-1 -1 _ (1)
Tan { Tan Fn/Fn+1 - Tan Fn+1/Fn+2 /! F
2n+2
Theorem 4.,
F n
Tan ™t 3 L. 3 (—1)m+l Tan—li‘—l——
n+1 m=1 2m

We proceed by mathematical induction. For n = 1, itis easy toverify Tan™11
= Tan L (1/F,).

Assume true for n = k, thatis

F k
Tan™! 7 ko s (™t ran™t -1;:-1——
k+1 m=1 2m
But, by Theorem 3,
F F k
Tan™! —Fk+1 - Tan™! = LS —(——LF—I
k+2 k+1 2k+2
Thus, if
F k
Tan™ ! F k 5 (_1)m+1 Tan™! F————l
k+1 m=1 2m
then
F k k
Tan_l Fk+1 =z (_1)m+1 Tan_l F1 + Ta_n_l F{—l[
k+2 m=1 2m 2k+2
k+1
= 3z ()™ Tan? ?1—
m=1 2m
because Tan_l(—X) = —Tan-lX and (—1)k = (_1)k+2 and the proof is complete.
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8. AN EXTENDED RESULT

Theorem 5., The series

o]
A=z ()™ T
m=1 2m

converges and A = Tan™! (N5 - 1)/2.
Proof: Since the series is an alternating series, and, since Tan_lX is

a continuous increasing function, then

Tan™* F—l— > Tan™t 3 and Tan 10 = 0 .
2n 2n+2
The angle A must lie between the partial sums SN and SN+1 for every N >2
. . . — __1
by the error bound in the alternating series, but SN = Tan (FN / FN+1)' Thus
the angles of UN and UN+1 lie on opposite sides of A, By the continuity of
Tan_lX then
lim -1 _ _ -1 B
e Tan™ (F_/F ) = A = Tan (N5 - 1)/2 .
Comment: The same result can be obtained simply from
F. - Js _ 1\ 20+l
Tan { Tan~L - \/52 Lo gyt ( 52 1 )
n+l ’
. . . . . 5-1
Which slope gives a better numerical approximation to 5 . Fn / le or

Ln/Ln+1? Hmmm?
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