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1. INTRODUCTION 

In the p r i m e r , P a r t III, i t was noted that if V = (x,y) i s a two-dimensional 

vec tor and A i s a 2 by 2 ma t r i x , A = f a J , then V1 = AV i s a two-

dimensional vec tor , V1 = (x?,yf) = (ax + by, ex + dy). He re , V and c o n s e -

quently Vf, a r e exp re s sed as column vec to r s . The ma t r i x A i s said to t r a n s -

form, or map , the vec tor V onto the vector Vf. The ma t r i x A i s cal led the 

mapping ma t r i x o r t rans format ion mat r ix . 

2. SOME MAPPING MATRICES 

The ze ro m a t r i x , Z = ( J , maps every vector V onto the ze ro 
0 0 

The identity ma t r i x , I = ( ) maps every vec tor V onto itself; that 

vec tor <p = (0,0) 

The id 

i s , IV = V. 

The m a t r i x B = f J maps vec to r s V = (k,-k), (k any r e a l n u m b e r ) , 

onto the ze ro vec tor <t>. Such a mapping as de te rmined by B i s cal led a many-

to-one mapping. 

If the only vec tor mapped onto <p i s the vec tor <p itself, the mapping i s 

a one- to-one mapping. A ma t r i x A de te rmines a one- to-one mapping of two-

dimensional vec to r s onto two-dimensional vec to r s if, and only if, det A 4= 0. 

If det A 4= 0, for each vector U, the re ex i s t s a vec tor V such that AV = 

U. Note, however , that for m a t r i x B above, B ( 1 = ( 2 + ? )• T n e r e i s 

no vector V such that BV = (0,1). 

3. GEOMETRIC INTERPRETATIONS OF 2x2 MATRICES 
AND 2-DIMENSIONAL VECTORS 

As in P r i m e r III, the vector V = (x,y) i s i n t e rp re t ed as a point in a r e c -

tangular coordinate sys tem. Thus the geomet r ic concepts of length, d i rec t ion, 

slope and angle a r e assoc ia ted with the vector V. 

A non-ze ro s ca l a r multiple of the identity ma t r i x , kl , maps the vector 

U = (a,b) onto the vec tor V = (ka,kb). The length of V, |V| , i s equal to |k | 

|u|. There is no change in slope but if k < 0 the sense or direction is reversed. 
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The matrix f 1 J maps a vector onto the reflection vector with respect 
to the line through the origin with slope one. Note that different vectors may 
be rotated through different angles! 

1 1 0 \ The matrix ( J preserves the first component of a vector while an-
nihilating the second component. Every vector U = (x,y) is mapped into a 
vector on the x-axis. 

The matrix R = I . n a\ rotates all vectors through the same 
\sin 9 cos 6) & 

angle Q (theta), in a counterclockwise direction if theta is a positive angle. 
There is no change in length. This seems to contradict the notion of a matrix 
having vectors whose slopes are not changed but in this case the characteristic 
values are complex; thus, there are no real characteristic vectors. 

4. THE CHARACTERISTIC VECTORS OF THE Q-MATRIX 

The Q matrix f 1 J does not generally preserve the length of a vec-
tor U = (x,y). Also s different vectors are in general rotated through different 
angles. 

The characteristic equation of the Q matrix Is 

X2 - X - 1 = 0 
with roots 

1 + N/5 , , 1 - '\/5 Xi = —2 and X2 = —^ 

which are the characteristic roots, or eigenvalues, for Q. 
To solve for a pair of corresponding characteristic vectors consider 

i i ) G ) - > ( J ) • * • * * • • 
Then 

(1 - X)x + y = 0 . 

Thus, a pair of characteristic vectors are 

Xt = (XlXjx) , j Xt\ * 0 , 
with slope 

\/5 - 1 I I 
mi = ^— and X2 - (X2x,x), j X21 ^ 0 , 

with slope 
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What happens when the ma t r ix Q2 i s applied to the c h a r a c t e r i s t i c vec to r s 
Xt and X2 of ma t r ix Q? Since 

Q2Xj = Q(QX1) = Q(XXi) = XQXt = \2Xt 

c lea r ly Xt i s a c h a r a c t e r i s t i c vec tor of the ma t r ix Q2 as well as a c h a r a c t e r -

i s t i c vec tor of ma t r ix Q„ The cha rac t e r i s t i c roots of Q2 a r e the squa re s of the 

c h a r a c t e r i s t i c roo t s of m a t r i x Q. In genera l if Xj and \ 2 a r e the c h a r a c t e r -

i s t ic roo t s of Q then X t and X 2
 a r e the cha rac t e r i s t i c roo t s of Q . But the 

c h a r a c t e r i s t i c equation for Q i s 

X2 - (F Ll + F n )> + (F . F . - F 2 ) = 0 . v n+1 n - l ; v n+1 n -1 n ' 

Recal l ing that L = F ^ + F ^ F . F 1 - F 2 = ( - l ) n , and L 2 = 5F2 + & n n+1 n - 1 8 n+1 n - 1 n v ; ' n n 

4 ( - l ) n
s i t follows that , s ince lt = a = (1 + \Td)/2 and X2 = P = (1 - V5)/2, 

a
n = l^ = (L + \ / 5 F ) / 2 and /5n = \n

2 = (L - NTSF ) / 2 . 

5. FIBONACCI AND LUCAS VECTORS AND THE Q MATRIX 

Let U = (F , - 9 F ) and V = (L - s L ) be denoted as Fibonacci and n x n+ l s n . • n n+1* n ' 
Lucas v e c t o r s , respec t ive ly . We note 

,n+l 
| U n | 2 = F n + 1 + K - F 2 n + 1 m d | V n | 2 = L n + 1 + L n = < 5 F n + l + ^ 4 + 5 F n 

+ ( -D n 4) = 5 ( F ^ + 1 + F^) = 5 F 2 n + 1 . 

It i s well known that the s lopes of the vec to r s U and V (the r a t i o s 

F / F .. and L / L ) approachthe s lope , (\T5 - l ) / 2 , of the c h a r a c t e r i s t i c 

vec to r , Xl0 

Since Q Q = Q , i t i s easy to verify that 

F F + F F = F 
m+1 n+1 m n m+n+1 

by equating e lements in the upper left in the above ma t r ix equation. In a s i m i -

l a r manner i t follows that 

y T? + -p T? = F 
m+1 n+2 m n+1 m+n+2 

F . F + F F 1 = F J m+1 n m n - 1 m+n 

Adding these two equations and using L ,-, = F 2 + F i t follows that 

F x 1 L ^ + F L = L J ^ . m+1 n+1 m n m+n+1 
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From the above identities it is easy to verify that 

Q n + l v 0 = Q V n = V l 
Qn + 1U0 = QUn = U n + 1 

QnV = V 
^ m m+n+1 ' 
Q l l u m = U m + n + l • 

6. A SPECIAL MATRIX 

Let P = ( 2 " ), then from 

L ± 1 = F ± 1 + 2 F , L = 2 F . - F n+1 n+1 n ' n n+1 n 
5F ^ = L ^ + 2 L ,5F = 2L x 1 - L n+1 n+1 n ' n n+1 n 

it follows that 

PU = (F x 1 + 2F , 2F x 1 - F ) = V n n+1 n* n+1 n ' n 
PV = (L ^ + 2L , 2L ^ - L ) = 5U n v n+1 n* n+1 n ' n 

Also 

P2Qn = 5Qn 

D ( ^ n + 1
L ^ ) = D(P)D(Qn) = 5 ( - l ) n + 1 

V n n-1 / 

We now discuss two geometric properties of matrix P. Let U = (x,y), 
|Ul2 = x2 + y 4 0. 

PU = (x + 2y, 2x - y) |PU|2 = 5(x2 + y2) = 5|u|2 

Thus matrix P magnifies each vector length by \/5. 
If t a n a = y/x, we say a = Tan y/x, read " a is an angle whose tan-

gent is y/x.? ! Let tan » = y/x and tan/3 = (2x - y)/(x + 2y). From tan (a+ p) 
= (tan a + tan j3)/(l - tan a tan /3) we may now see what effect P has on the 
slope of vector U = (x,y). 
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Now (recalling x2 + y2 + 0 says x and y are not both zero at the same 
time.) 

tan (a + fi) = tan fTan"1 * + Tan"1 ^ - ^ ) = ^ 2 + J2) 

Thus, since x2 + y2 £ 0, then 

tan (a + /3) = 2 . 

What does this mean? Consider two vectors A and B, the first inclined at 
an angle a with the positive x-axis and the second inclined at an angle /S with 
the positive x-axis and the angles are measured positively in the counterclock-
wise direction. The angle bisector, ip , of the angle between vectors A and 
B is such that a - ip - #- p whether or not a is greater than (3 or the other 
way around. Solving for ip yields 

* = (a + /5)/2. 

Thus ip is the arithmetic average of a and p. Also we note that a + ft = 2ip. 
The tangent of double the angle is given by 

tan 2ip = (2 t an^) / ( l - tan2^) . 

Let 
+ / *̂ 5 - 1 
tan^= —5 , 

then it is an easy exercise in algebra to find tan 2^ = 2, but tan (a + /3) = 2, 
therefore we would like to conclude that the angle bisector between vectors U 
and PU is precisely one whose slope is fs/5 - l ) /2 , but this is the slope of 
X1? the characteristic vector of Q. Can you show that Xt is also a character-
istic vector of P? 

We have shown 
Theorem 1. The matrix P = f „ - j maps a vector U = (x,y) into a 

vector PU such that 

(1) | P ( U ) | = Vs |ul 

and 
(2) The angle bisector of the angle between the vector U and the vector PU 
is X b a characteristic vector of Q and P. Thus Matrix P reflects vector 
U across vector Xt. 
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T h e o r e m 2. The vec to r s U n and V a r e equally incl ined to the vec tor 

Xj whose slope i s Cs/5 - l ) / 2 . 
Coro l la ry . The vec to r s V a r e mapped into vec to r s ^ 5 U by P and 

the vec to r s U a r e mapped into V by P . n ™ n J 

7. SOME INTERESTING ANGLES 

An in te res t ing theo rem is 

T h e o r e m 3. r ^ 
j L \ n 

Tan (Tan™1 L / L . - Tan™1 ~^S = 1^~-
\ n / n + 1 Ln+2j F2n+2 

klfl Tan { Tan L F /F . - Tan x F . / F „ \ = -^ 
^ n / n+1 n + 1 / n + 2 j F £ n + 2 

Theo rem 4. 

m ~1 n , ..xm+l m - 1 1 
Tan •= = 2 (-1) Tan n+1 m=l 2m 

We proceed by mathemat ica l induction. For n = 1, i t i s easy to verify Tan""1! 

= T a n " 1 ( l / F 2 ) . 

Assume t r u e for n = k, that i s 

F k 
rp - 1 k , i x m + l ^ - 1 1 
Tan •= = 2 (-1) Tan — k+1 m=l 2m 

But, by Theorem 3 , 

Thus , if 

F F k 
™ - l r k+1 rp - 1 k ,_ « - 1 (-1) 
Tan := = Tan ^ — + Tan ^ f 

k+2 k+1 2k+2 
F k 

m - 1 k , _ m + l ^ - 1 1 
Tan = 2 (-1) Tan -—• 

k+1 m = l 2m then 

T a n - 1 ^ = I ( - l ) m + 1 T a n " 1 J L _ + T a n - 1 ± l t 
k+2 m=l 2m 2k+2 

k+1 
= 2 ( - l p , J L T a n F 

m = l 2m 
- 1 - 1 k k+2 

because Tan (-X) = -Tan X and (-1) = (-1) and the proof i s complete . 

vm+l m - 1 1 
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8e AN EXTENDED RESULT 

Theorem 5. The s e r i e s 

A = 2 ( - l ) m + 1 T a n " 1 X 

m=l 2m 

converges and A = Tan (N/S - l ) / 2 . 

Proof: Since the s e r i e s is -an a l ternat ing s e r i e s , and, s ince Tan"" X i s 
a continuous inc reas ing function, then 

T a n " 1 ^ - i - > T a n " 1 ~^— and T a n " 1 0 - 0 . 
2n 2n+2 

The angle A mus t l ie between the pa r t i a l sums S N and S N for every N > 2 

by the e r r o r bound in the a l ternat ing s e r i e s , but S^ = Tan" 1 ( F
N / F ). Thus 

the angles of U N and U N - lie on opposite s ides of A. By the continuity of 
T a n ^ X then 

l i m T a n " 1 (F / F , n ) = A = T a n " 1 (N/S - l ) / 2 . 
n-*oo v n / n + 1 ; v ' 

Comment: The s ame r e su l t can be obtained simply from 

"^5 - 1 Which slope gives a be t t e r numer ica l approximation to — - — , F / F or 
& n / n~i _L 

L / L ? H m m m ? 
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