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1. INTRODUCTION 

By applying the exponential generat ing function t ransformat ion 

00
 fn 

(1.1) Y(t) = 2 y ^7 , ; w _ J n n 
n=0 

we der ived in P a r t I of this a r t i c l e [1 ] an explicit formula for the genera l so lu-

tion of the homogeneous l inear r e c u r r e n c e re la t ion 

k . k 
(1.2) L 1 (E)y = 2 a. EJ y = 2 a .y . = 0 , 

k ; n . A 1 J n • n J n+J 

where the coefficients a. were cons tan ts , and the t rans la t ion opera tor E^ was 

defined by 

E j y n = y n + j (5 = 0 , 1 , . . - . k ) . 

In the p r e s e n t p a r t of this a r t i c l e , we d i scuss the non-homogeneous r e c u r r e n c e 

re la t ions having var iab le coefficients. 

2. EXPLICIT SOLUTION 
OF A NON-HOMOGENEOUS RECURRENCE RELATION 

We consider the l inear non-homogeneous r e c u r r e n c e re la t ion 

k 
(2.1) 2 a. y . = L, (E) y = b 
x ' - ^ 1 n+i kv ; J n n 

with constant coefficients, and where the roo t s r l s r 2 , • • • , r, of the c h a r a c -

t e r i s t i c equation L, (r) = 0 a r e all dist inct. Multiplying both s ides of (2.1) by 

t n / n ! and summing over n from 0 to 00 yield the t r ans fo rmed equation 

(2.2) Lk(D)Y = B(t) , [ D = ^ 

where 
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(2.3) B(t) = 2 b £ . 
n=0 

Now (2.2) is an ordinary Linear differential equation whose genera l solution i s 

k r . t 
(2.4) Y(t) - Y (t) + 2 c e 1 , 

p i=l 1 

where , by the method of var ia t ion of p a r a m e t e r s , the pa r t i cu l a r solution Y (t) 

can be e x p r e s s e d by 

f p ( t / .~, Li! ( r . ) ~ nf * ^ i= l k x i ' n=0 0 

k r j t ^ b * 
(2.5) Y( t ) = 2 ^ T T - ^ % ~J J S

n e"riS ds 

or 
00 ,n k r . n - 1 b 

(2.6) Y (t) = 2 ~ 2 T7T—^ 2 — ^ 
P 1 n . ., L! (r. ) p+1 
^ n=l i= l r v i ; p=0 r . 

^ 1 

Since y = Y (0), we immediate ly find that 

k k r . n - 1 b 
(2-7) yn = * c i r " + 2 L [ t ) 2 -p?r 

1=1 1=1 kx 1 ; p=0 r . 

i s the genera l solution of the r e c u r r e n c e re la t ion (2.1). The case where L, (r) 
= 0 has repea ted roo t s maty be t r ea t ed in a s im i l a r way and i s left to the r e a d e r . 

3. LINEAR EQUATIONS WITH VARIABLE COEFFICIENTS 

A general izat ion of the r e c u r r e n c e re la t ion (1.2) with constant coefficients 

i s the equation 

(3.1) 2 P . ( n ) y , . = 0 , 

where P.(n) a r e polynomials of degree q. in the independent d i s c re t e var iab le 

n. If the exponential generat ing function (1.1) i s applied to (3.1), we obtain the 

differential equation 
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k , 
(3.2) 2 P . ( 0 ) Y U ) - 0 

j=0 J 

where <p i s the opera to r 

(3.3) cp=t D = t ~ 

and where , by definition, 

J m 
3.4 P . (n) = s a n 

J m=0 

Equation (3.2) i s an immedia te consequence of the following theorem which can 

easi ly be es tabl ished by mathemat ica l induction: 

Theorem 3.1. The exponential generat ing function for the sequence 

{ n m y n + . } i s given by 

(3.5) 0 m Y ( j ) ( t ) = 2 n m y ^ , (j = 1 , 2 , . . - ; m = 0 , 1 , . • - , ) 
n=0 J * 

where <p is defined by (3.3). 

Since the theory of differential equations is r i c h e r in special formulas 

and techniques than the corresponding formulas and techniques in the theory of 

r e c u r r e n c e r e l a t i ons , equation (3.2) resu l t ing from the application of the ex-

ponential generat ing function may be more amenable to an explicit solution than 

the original re la t ion (3.1). We i l lu s t r a t e this fact with the following examples : 

4. EXAMPLES WITH VARIABLE COEFFICIENTS 

The Bes se l functions J (x) of o r d e r n satisfy the r e c u r r e n c e re la t ion 

(4.1) x y
n + 2 ( x ) " 2 ( n + 1 ) y n + l ( x ) + X y n ( x ) = ° ' 

which i s a very special ca se of (3.1) with k = 2, P2(n) = x, P^n) = -2(n + 1), 

P0(n) = x. Equation (3.2) thus yie lds the differential equation 

(4.2) (x - 2 t )Y n - 2 Y! + x Y = 0 , 

which has the pa r t i cu l a r solution 
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(4.3) Y = J0 (^x2 - 2tx) , 

where JQ(Z) is BessePs function of zero order defined by [2] 

00 . m 2m 
(4.4) J0(z) = S - t i ^ . 

m=0 4 (m! )2 

Thus, we find 

Y = J 0 ( ^ ^ t x ) = S H> J* 2 - 2tx> 
m=0 4 (m! )2 

.m 2m m 00 , 1vm 2m m / \ / 0, \ n 
2 ^ X 2 m (-Dn " I 

m=0 4m(m! )' n=0 U ' V x ' 
n °° , _ m /• x 2m 

I 2 i=k 
n=0 x " ' m=n 4 " - ^ ( D ' J L <=£(?)&? 

or finally 

(4.5) ¥ = 2 ^ 2 - y ^ x 
n = 0

 n-' j=o 2 2 j + n j ! (j + n).» 

By definition of the generating function (1.1), we therefore have 

°° /_iJ 2J+n 

(4-6) y„(x) - J (x) = 2 - t £ L x 
J=0 2 2 j + n j ! (j + n)! 

As a final example, we consider the second-order recurrence relation 

(4.7) yn+2(x> - 2 x y n + i ( x ) + 2 ( n + 1 ) y
n

( x ) = ° 

which is satisfied by the Hermite polynomials H (x) of degree n, with initial 
values 

(4.8) y0(x) = 1, y,(x) = 2x . 

The transformed equation of relation (4.6) is the differential equation 
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(4.9) Y?f - 2(x - t)Yf + 2Y = 0 

with conditions Y(0,x) = 1 and Yf(0,x) = 2x. Solution of (4.8) is 

(4.10) Y(t,x) = eX* . e" ( x" t ) 2 = e
2 t x ~ t 2

 $ 

and expansion of the right side thus yields 

[n/2] ( _ 1 ) m ( 2 x )n-2m 
(4.11) Y = 2 t v f , 0 ,. 

n « m (n - 2m ? 

n=0 m=0 v ; 

where [n/2] means the integral part n/2. From the definition of the expo-
nential generating function (1.1), it is seen that 

W2} (-nmn> (2x)n"2m 

(4.12) y = H (x) = 2 ( i) n. {Ax} _ 
v ' J n n w . m (n - 2m 

m=0 ' 
is the explicit solution of the recurrence relation (4.6) 

5. REMARKS 

The Laguerre polynomials9 and in fact most of the important special func-
tions of mathematical physics, satisfy a second-order recurrence relation of 
the form 

(5.1) [A2(x) + nB2(x)]yn+2(x) + [A^x) + nB1(x)]yn+1(x) + [A0(x) + nB0(x)]yn(x) = 0 

whose coefficients are linear in the independent real variable n. Explicit solu-
tions for them, by the method of generating functions, may be obtained as in 
the above two examples. The method of generating functions can also be easily 
applied to solve certain partial recurrence relations. In part III of this article 
we shall show how this may be done and give examples of solutions involving 
Fibonacci arrays . 
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