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1. INTRODUCTION
By applying the exponential generating function transformation
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we derived inPart I of this article [1] an explicit formula for the general solu-
tion of the homogeneous linear recurrence relation
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where the coefficients aj were constants, and the translation operator E) was
defined by
Ely =y .. (G=0,1,,k
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Inthe present part of this article, we discuss the non-homogeneous recurrence
relations having variable coefficients.

2. EXPLICIT SOLUTION
OF A NON-HOMOGENEOUS RECURRENCE RELATION

We consider the linear non-homogeneous recurrence relation

k
(2.1) S oa,y

L (EYy =Db
P k n
j=0

n+j = n
with constant coefficients, and where the roots ry, ry,---, T of the charac-
teristic equation Lk(r) = 0 are all distinct. Multiplying both sides of (2.1)by
tn/n.' and summing over n from 0 to « yield the transformed equation

_ d
(2.2) L DY = B(), D= g
where
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(2.3) B(t) = Z b =y

n=0

Now (2.2) is an ordinary linear differential equation whose general solution is
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where, by the method of variation of parameters, the particular solution Yp(t)

can be expressed by
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Since v, = Y(n)(O), we immediately find that
k k rri1 n-1 b
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is the general solution of the recurrence relation (2.1). The case where Lk(r)

= 0 has repeated roots may be treatedin a similar way and isleft to the reader.

3. LINEAR EQUATIONS WITH VARIABLE COEFFICIENTS

A generalization of the recurrence relation (1.2) with constant coefficients

is the equation
k
(3.1) zZ Pmny . =0,
where Pj (n) are polynomials of degree qj in the independent discrete variable

n. If the exponential generating function (1.1) is applied to (3.1), we obtain the

differential equation



1963 | LINEAR RECURRENCE RELATIONS — PART II 37

k g
(3.2) s P.(»)YD = o
=0

where ¢ is the operator
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and where, by definition,
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Equation (3.2) is an immediate consequence of the following theorem which can

easily be established by mathematical induction:

Theorem 3.1. The exponential generating function for the sequence

m .
{n yn+j} is given by
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where ¢ is defined by (3.3).

Since the theory of differential equations is richer in special formulas
and techniques than the corresponding formulas and techniques in the theory of
recurrence relations, equation (3.2) resulting from the application of the ex-
ponential generating function may be more amenable to an explicit solution than

the original relation (3.1). We illustrate this fact with the following examples:

4, EXAMPLES WITH VARIABLE COEFFICIENTS

The Bessel functions Jn(x) of order n satisfy the recurrence relation
(4.1) Xyn+2(X) - 2(n + 1)yn+1(x) + xyn(x) =0 ,

which is a very special case of (3.1) with k = 2, Py(n) = x, Py(n) = -2(n + 1),
Py(n) = x. Equation (3.2) thus yields the differential equation

(4.2) (x - 20)Y" - 2Y'+ xY = 0

which has the particular solution

9
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(4.3) Y = J, (Nx? - 2tx)

where Jy(z) is Bessel's function of zero order defined by [2]

m 2m
(4.4) Joz) = z Lz
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Thus, we find
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or finally
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By definition of the generating function (1.1), we therefore have
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As afinal example, we consider the second-order recurrence relation
(4.7) yn+2(x) - 2xyn+1(x) + 2(n + l)yn(x) =

which is satisfied by the Hermite polynomials Hn(x) of degree n, with initial

values

(4.8) Volx) = 1, yilx) =

The transformed equation of relation (4.6) is the differential equation
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(4.9) Y" - 2(x - t)Y' + 2Y = 0

with conditions Y(0,x) = 1 and Y'(0,x) = 2x. Solution of (4.8) is

2 —(x—t)2 _42
(4.10) Yitx) = & . o &N _ 2x-t

and expansion of the right side thus yields

0 n/2 m n-2m
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where [n/2] means the integral part n/2. From the definition of the expo-

nential generating function (1.1), it is seen that

[néZ] (—l)mn.' (2x)n—2m
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(4.12) Yn Hn(x) =

m=0

is the explicit solution of the recurrence relation (4.6)

5. REMARKS

The Laguerre polynomials, and in fact mostof the important special func-
tions of mathematical physics, satisfy a second-order recurrence relation of

the form

(5.1) [Ay(x) + nBy(®)]y, , () + [A1(x) + 1By )]y, () + [A4(x) + nBy(x)]y, (%) = 0

whose coefficients arelinear in the independent real variable n. Explicit solu-
tions for them, by the method of generating functions, may be obtained as in
the above two examples. The method of generating functions can also be easily
applied to solve certain partial recurrence relations. In part III of this article
we shall show how this may be done and give examples of solutions involving

Fibonacci arrays.
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