8. AN EXTENDED RESULT

Theorem 5. The series

$$A = \sum_{m=1}^{\infty} (-1)^{m+1} \operatorname{Tan}^{-1} \frac{1}{F_{2m}}$$

converges and $A = Tan^{-1} (\sqrt{5} - 1)/2$.

Proof: Since the series is an alternating series, and, since Tan⁻¹X is a continuous increasing function, then

$$Tan^{-1}\frac{1}{F_{2n}} > Tan^{-1}\frac{1}{F_{2n+2}}$$
 and $Tan^{-1}0 = 0$.

The angle A must lie between the partial sums S_N and S_{N+1} for every N > 2 by the error bound in the alternating series, but $S_N = Tan^{-1} (F_N/F_{N+1})$. Thus the angles of U_N and U_{N+1} lie on opposite sides of A. By the continuity of $Tan^{-1}X$ then

$$\lim_{n \to \infty} \operatorname{Tan}^{-1} (F_n / F_{n+1}) = A = \operatorname{Tan}^{-1} (\sqrt{5} - 1)/2 .$$

Comment: The same result can be obtained simply from

$${\rm Tan} \left\{ {\rm Tan}^{-1} \, \frac{F_{\bar{n}}}{F_{n+1}} \, - \, \frac{\sqrt{5} \, - \, 1}{2} \, \right\} = \, \left(-1 \right)^{n+1} \, \left(\frac{\sqrt{5} \, - \, 1}{2} \, \right)^{2n+1} \quad .$$

Which slope gives a better numerical approximation to $\frac{\sqrt{5}-1}{2}$, $F_n/\,F_{n+1}$ or $L_n/L_{n+1}?$ Hmmm?

- 1. Coxeter, H.S.M., <u>Introduction to Geometry</u>, New York: John Wiley and Sons, 1961.
- 2. Hambidge, J. <u>Practical Applications of Dynamic Symmetry</u>, New Haven: Yale Press, 1932.
- 3. Hunter, J.A.H. and Madachy, J.S., <u>Mathematical Diversions</u>, NewJersey: Van Nostrand Co., 1963.
- 4. Land, F., The Language of Mathematics, London: John Murray, 1960.
- 5. Thompson, D'Arcy W., On Growth and Form, New York: McMillan Co., 1944.