[Continued from page 206.]

Feb. 1972

\[a = 8x^2 + 4xk - 3 \]
\[b = 48x^4 + 32x^3k - 32x^2 - 12xk + 4 \]
\[c = b + 1 \]
\[a + b = (4x^2 + 4xk - 1)^2 \]
\[b + c = (8x^2 + 4xk - 3)^2 \]

Now \(\pm \sqrt{2x^2 - 1} \) in integral for 1, 5, 29, 169, \ldots, a recurrent series that has already been defined. Substituting alternately the positive and negative values of \(\pm \sqrt{2x^2 - 1} \) in \(a, b, c \), we obtain the desired triplets.

Several minor but interesting relationships may be noted in conclusion. Since

\[u = x^2 + (x + y)^2 , \]

it follows that

\[u = x^2 + (x + k)^2 = 4x^2 + 2xk - 1 \]
\[u = 1^2 + (1 + y)^2 = 2y^2 + 2yl + 1 , \]

and, since \(v = u - 1, \)

\[a + b = 2u^2 - 1 , \]

and

\[u = \sqrt{\frac{1}{2} (a + b + 1) .} \]