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H-192 Proposed by Ronald Alter, University of Kentucky, Lexington, Kentucky. 

If 

3n+l 

c = 
n 3=o 

{%: i ) M i , i • 

prove that 

c = 26 n + 3N , (N odd9 n > 0) 
n 

H-193 Proposed by Edgar Karst, University of Arizona, Tucson, Arizona. 

Prove or disprove: If 

x + y + z = 2 2 n + 1 - 1 and x3 + y3 + z3 = 2 6 n + 1 - 1, 

then 6n + 1 and 2 - 1 are primes. 

H-194 Proposed by H. V. Krishna, Manipal Engineering College, Manipal, India. 

Solve the Diophantine equations* 

283 



284 ADVANCED PROBLEMS AND SOLUTIONS [Apr* 

(i) x2 + y2 ± 5 = 3xy 
(il) x2 + y2 ± e = 3xy 9 

where 

e = p2 - pq - q2 

p ,q positive integers. 

SOLUTIONS 
BINET GAINS IDENTITY 

H-180 Proposed by L Carlitz, Duke University, Durham, North Carolina. 

Show that 

(n + k)I F \^ ( n \ 3 _ \*^ (n + 

n 
Y ^ / n \ 3

 = « (n + k)I T 

£ S * ' ^ " ^ W ( a - 2k)! (2n"3k) ' 
th where F, and L, denote the k Fibonacci and Lucas numbers s respectively. 

Solution by David Zeitlin, Minneapolis, Minnesota. 

A more general result is that 

n 

« Ef^Ybn"kaV = V ^(n + k)l - bkak W2n-3k ' 
k=0 2k<n 

where W l 0 = aW ,- + bW , n = 0, 1, *•*. For a = b = 1, we obtain 
n+2 n+1 n 

the desired results with W, = F. and W, = L , . 
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Proof. From a well-known result t we note that 

(2) V ( t I"** " V '" * "" xk<X + I)""2" E (IP - E 
k=Q 7 2k=r-

Set x = (ay)/b in (2) to obtain: 

n 

E / n \ 3
u n - k k k \ ^ (n + k)I , k k k , , , v I k ) b a y = ẑ  r̂ r——f

 b a y ( a y + b) 
L _ A \ / o i ^ (k!)3(n - 2k)l 

k=0 • ' 2k^n ^ ( Q ~ 2k)I 

(3) 
k=0 x ' 2k<n 

Let a9fi be the roots of y2 = ay + b* Noting that W = CjQf + C2j8 , we ob-
tain (1) by addition of (3) for y = a and y = |8e 

Remarks,, If a = 2x§ b = - 1 , then with W. = T. (x), the Chebyshev 
polynomial of the first kind^ we obtain from (1) 

k=0 X 7 2k<n lKs) l n " m° 

For a = 2g b = 1, one may choose W. = P . , the Pell sequence. 
Let V0 = 2, Vi = a, and V k + 2 = aV k + 1 + bVfe. Then, from (1), we 

obtain the general result 

n 
^ ! < - i > m t l ^ i ° " k w m k + p 

k=0 

s S n " ^ ^ J ( ( - 1 ) m + l b m V
m ) Wm(2n-3k)+p 

for m5p = 0g 1, 
It should be noted that (1) is valid for equal roots* i. e* , a = /3. 

*JS Riordan, Combinatorial Identities, p* 41. 
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Also solved by F. D. Parker, A. G. Shannon, and the Proposer. 

SUM-ER TIME 

H-181 Proposed by L Carlitz, Duke University, Durham, North Carolina. 

Prove the identity 

E m n -

(am + en) (bm + dn) —r-r- = u w^ , v— . , 
m! nl (1 - ax) (1 - dy) - boxy 9 

m?n=0 
where 

u = x e - ^ - ^ y ) , v = ye-( c x 4 dy> 

Solution by the Proposer. 

m n 
/ J ( a m + cn)m(bm + dn)n ^ ~ 

m9n=0 

m n = £ (am + cn)m(bm + dn)n i j X - e-(am-*n)x-(bm-Hin)y 

m9n=0 
0 0 . o o 

u- TT «•—"•% 4 / n m 4 - r > n r -i ^—"H I r ( K m - l - r l m l 
= £ (am + cn)m(bm + dn)n ^ £ (-1)J ^ ^ £ (- l)k ( b m ^ , d l l ) , 

m9n=0 j=0 k=0 

m n 

E E £ E E w»i+lt(T)(k) ««•>-»•<*.-« m * - » * • » " 
m9n=0 j=0 k=0 

00 m n 

E l & E E w)m+n-j-k(T)(^)w+ «mw+»" 
m9n=0 j=0 k=0 

But 
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m n 
S m 

i=0 lr=n \ / \ / j=0 k=0 

m n m 

r = 0n=0 X 7 j=0 ^ ' 

£ ^)n"k(^) 
k=0 X ' 

,d r + s 

Since 

m m 
m) 
m) 

j=0 

we need only consider those terms in (*) such that 

[m + n - r - s ^ m 
1 r + s ^ n 5 

that is s r + s = n* 
We therefore get 

min(m,n) 
—.̂  / m \ / n \ m- r ,n- r / u \T 

= ™f"! V ( rJ( rJa d (be) f 
J» — AAA® AX 8 ^ 

mgn Z ^ 
r=0 

so that 
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oo 

V (am + c n ) m ( b m + d n ) n - V r -
m9n=0 

min(m,n) 

E m n \°«% f m \ / n \ m - r j i - r , , vi X y .L \ v){v)a d (bc) 
m,n=G r=0 

oo oo 

= £<bc^r z (m;r)(n;r)(-)m(dy)n 

r=0 m , n = r 

co 

= £ (bcxy) r ( l - a x ) - r _ 1 ( l - d y ) - 1 - 1 

r=0 

_1fi - rfvrMi _ „—^cxy = (1 - ax) * ( ! - dy)~ 
( (1 - ax)( l - dy) r = {(1 - ax)(l - dy) - bcxy) X 

ARRAY OF HOPE 

H-183 Proposed by Vemer £ Hoggatt, Jr., &/? Jose State College, San Jose, California. 

Consider the display indicated below. 

1 

1 1 

2 2 1 
5 4 3 1 

13 9 7 4 1 
34 22 16 11 5 1 

8 9 56 38 27 16 6 1 

Pasca l Rule of Format ion Except for P r e s c r i b e d Left Edge. 

(i) Find an express ion for the row s u m s . 

(ii) Find a genera t ing function for the row s u m s . 
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(ill) Find a generating function for the rising diagonal sums. 

Solution by the Proposer. 

i) An inspection of the array reveals that the row sums are F„ -
(n = 0, 1, 2, •••) 

ii) If the columns are multiplied by 1, 2$ 39
 9 e e sequentially to the 

right9 then the row sums have the generating function, 

(1 - x) (1 - x) 
(1 - 3x + x2) (1 - 2x) 

Thus the row sums are the convolution of the two sequences: 
a) Ai = 1, An = F 2 n + i (n - D and 
b) Bi = 1, B n = 2n-l (n > 1) . 

iii) The rising diagonal sums, E , are the convolution of the two 
sequences: 
c) C = F __x and 
d) Dn =\2a_* (n = 0 s l , 2 , . - . ) . 
Hence 

(1 - x)3 

(1 - x - x 2 ) ( l - 3x + x2) Q = 0 

FIBO-CYCLE 

LmJ n 

H-184 Proposed by Raymond £ Whitney, Lock Haven State College, Lock Haven, Pennsylvania. 

Define the cycle a (n = 1 , 2, •• •) as follows^ 

i) a = (1, 2, 3, 4, • • - , F ) , 
n II 

where F denotes the n Fibonacci number. Now construct a se-
quence of permutations 

00 

« * [ . (n = 1, 2, • • • ) 
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F F F 

(ii) a i + 2 = a i • x i + 1 (i - 1) . 
N n n n 

Finally9 define a sequence 

1 n n=l 

as follows: u is the period of 

OO 

Ft. 
i . e . , u is the smallest positive integer such that 

(iii) a 1+un = a 1 (i > N) . 
x n n v 

a) Find a closed form expression for u . 
b) If possiblej show N = 1 is the minimum positive integer for which 

iii) holds for all n = 19 29
 e e e . 

Solution by the Proposer. 

Since a is of order F , it follows that the exponents of a may be 
replaced by residues mod F and u is thus the period of the Fibonacci se-
quence mod F . Therefore uA = u2 = l s u3 = 3* Consider the Firs t n r e s -
idue classes of the Fibonacci seuqence9 mod F (n ^ 4); 1, 1, 2, 3, °oa

9 
st F 1 9(K The (n +1) residue class is F - = 1 + (F - - 1) and 

(2n - 1) class is 

F - + F - (F - - 1) = F2 , n-1 n-1 n-1 n-1 

However, 

F ^ = F + F n (n > 2) 
n+1 n n-1 N 

and 
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F , F ^ - F2 = (- l)n (n > 2) 
n-1 n+1 n 

Implies 

F2 - = (»l)n (mod F ) . n-1 i r 

If n is even (n ^ 4), we have F2 - = 1 (mod F ) and u = 2n* If n is ' n-1 n n 
odd (n > 4), F2 - = -1 (mod F ) and u = 4n@ 

From the above, it is obvious that N = 1 is the smallest positive Inte-
ger for which (III) holds for all n = 1, 2, * • 9 . It Is interesting to note that 

(un(n = 1, 2, • • •} fl ( F j n = 1, 2, • • •} = {F l f F4? F6 , FB, F12, — } . 

[Continued from page 282. ] 

NOTE ON SOME SUMMATION FORMULAS 

by 

S 0 + S 1 + S 2 ^ • • 

TT (k + St + 2s2 + 3s3 + . . . + I) 
i=l 

s0is1Is2t . . . 
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