The solution is then given by Eq. (1.8) as

$$
\begin{equation*}
\mathrm{H}_{\mathrm{n}}=\mathrm{C}_{11} \alpha^{\mathrm{n}}+\mathrm{C}_{12} \mathrm{n} \alpha^{\mathrm{n}-1}+\mathrm{C}_{21} \beta^{\mathrm{n}}+\mathrm{C}_{22} \mathrm{n} \beta^{\mathrm{n}-1} \tag{2.5}
\end{equation*}
$$

with the $C_{i j}$ given by Eq. (1.9). In practice, however, the $C_{i j}$ are most easily found by solving the set of simultaneous equations derived by applying the initial values, $\mathrm{H}_{0}, \mathrm{H}_{1}, \mathrm{H}_{2}, \mathrm{H}_{3}$, for $\mathrm{n}=0,1,2,3$, The solution yields:

$$
\begin{aligned}
& \mathrm{C}_{11}=\frac{3-\alpha}{5} \mathrm{H}_{0}+\frac{2 \alpha-1}{5} \mathrm{H}_{1}+\frac{2}{25}(1-2 \alpha) \\
& \mathrm{C}_{12}=1 / 5 \\
& \mathrm{C}_{21}=\frac{2+\alpha}{5} \mathrm{H}_{0}+\frac{1-2 \alpha}{5} \mathrm{H}_{1}+\frac{2}{25}(2 \alpha-1) \\
& \mathrm{C}_{22}=1 / 5
\end{aligned}
$$

REFERENCES

1. Gustav Doetsch, Guide to the Applications of the Laplace and Z Transforms, Van Nostrand Reinhold Company, New York, 1971.
2. Robert M. Giuli, "Binet Forms by Laplace Transform," Fibonacci Quarterly, Vol. 9, No. 1, p. 41.
[Continued from page 264.]
(If $\mathrm{M}_{2}=1$, $\mathrm{i}_{.}$e., there is only one cell in the second group, then it cannot exchange with both $A_{M_{1}}^{1}$ and A_{1}^{3}. The rearrangements corresponding to this case are eliminated in (6) since it occurs when $k_{1}=k_{2}=1$ and $G(-1)=0$.)

The remainder of the proof follows the same procedure. Define $k_{j}=1$ if $A_{M_{j}}^{j}$ and A_{1}^{j+1} exchange, $k_{j}=0$ otherwise, $j=3, \cdots, N-1$. For each of $2^{\mathrm{N}-1}$ possible values of ($\mathrm{k}_{1}, \mathrm{k}_{2}, \cdots, \mathrm{k}_{\mathrm{N}-1}$) the number of distinct arrangements of the N groups combined is

$$
\begin{equation*}
G\left(M_{1}-k_{1}\right)+G\left(M_{N}-k_{N-1}\right) \cdot \prod_{j=2}^{N-1} G\left(M_{j}-k_{j-1}-k_{j}\right) \tag{7}
\end{equation*}
$$

[Continued on page 293.]

REFERENCES

1. V. E. Hoggatt, Jr., "A New Angle on Pascal's Pyramid," Fibonacci Quarterly, Vol. 6 (1968), pp. 221-234.
2. V. C. Harris and C. C. Styles, "A Generalization of Fibonacci Numbers," Fibonacci Quarterly, Vol. 2 (1964), pp. 277-289.
3. V. E. Hoggatt, Jr., and Marjorie Bicknell, "Diagonal Sums of Generalized Pascal Triangles," Fibonacci Quarterly, Vol. 7 (1969), pp. 341-358.
4. V. E. Hoggatt, Jr., "Convolution Triangles for Generalized Fibonacci Numbers," Fibonacci Quarterly, Vol. 8 (1970), pp. 158-171.
5. Stephen Mueller, "Recursions Associated with Pascal's Pyramid," Pi Mu Epsilon Journal, Vol. 4, No. 10, Spring 1969, pp. 417-422.
6. Stanley Carlson and V. E. Hoggatt, Jr., "More Angles on Pascal's Triangle," Fibonacci Quarterly, to appear.
7. Melvin Hochster, "Fibonacci-Type Series and Pascal's Triangle," Particle, Vol. IV (1962), pp. 14-28.
8. V. E. Hoggatt, Jr., "Fibonacci Numbers and Generalized Binomial Coefficients," Fibonacci Quarterly, Vol. 5 (1967), pp. 383-400.
[Continued from page 292.]

The total number of distinct arrangements of the N groups combined is obtained by summing the expression in (7) over all possible values of $\left(k_{1}, k_{2}\right.$, \ldots, k_{N-1}, i.e., over the set $\mathrm{S}_{\mathrm{N}-1}$. But the total number of distinct arrangements is also equal to

$$
G\left(\sum_{j=1}^{N} M_{j}\right)
$$

The identity in (3) then follows from $G(n)=F(n+1)$.

