$$
F_{n-1} F_{n+1}-F_{n}^{2}=(-1)^{n} \quad(n \geq 2)
$$

implies

$$
\mathrm{F}_{\mathrm{n}-1}^{2} \equiv(-1)^{\mathrm{n}} \quad\left(\bmod \mathrm{~F}_{\mathrm{n}}\right)
$$

If $n$ is even $(n \geq 4)$, we have $F_{n-1}^{2} \equiv 1\left(\bmod F_{n}\right)$ and $u_{n}=2 n$. If $n$ is odd $(n>4), F_{n-1}^{2} \equiv-1\left(\bmod F_{n}\right)$ and $u_{n}=4 n$.

From the above, it is obvious that $\mathrm{N}=1$ is the smallest positive integer for which (iii) holds for all $\mathrm{n}=1,2, \cdots$. It is interesting to note that
$\left\{u_{n} \mid n=1,2, \cdots\right\} \cap\left\{F_{n} \mid n=1,2, \cdots\right\}=\left\{F_{1}, F_{4}, F_{6}, F_{9}, F_{12}, \cdots\right\}$.
[Continued from page 282.]

NOTE ON SOME SUMMMATION FORMULAS
by

$$
\frac{\prod_{i=1}^{s_{0}+s_{1}+s_{2}+\cdots}\left(k+s_{1}+2 s_{2}+3 s_{3}+\cdots+i\right)}{s_{0}!s_{1}!s_{2}!\cdots}
$$

REFERENCE

1. L. Carlitz, "Some Summation Formulas," Fibonacci Quarterly, Vol。 9 (1971), pp. 28-34.
