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For a sequence of Integers S = (sl9 s2» * • *), we denote by P(S) the 
set 
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We say that S is complete if all sufficiently large Integers belong to P(S). 
Conditions under which a sequence S is complete have been studied by a 
number of authors. These sequences have ranged from the slowly growing 
sequences of Erdos [3] and Folkman [4] (s = 0(n2))f the polynomial and 
near-polynomial sequences of Roth and Szekeres [9], Graham [5] and Burr 
[ l ] s to the near-exponential sequences of Cassels [2] (s = 0 (exp (n/logn))) 
and the exponential sequences of Lekkerkerker [7] and Graham [6] (s = 
[ta ] ) . In this note? we investigate sequences in which each term is a Fib-
onacci number9 L e„ , an integer F defined by the linear recurrence 

F_LO = F _ 1 _ i + F 5 n > 0 , 
n+2 n+1 n' 

with F0 = 0, F4 = 1. 
For a sequence M = (mls m2? •••) of nonnegative integers., let S M 

denote the nondecreaslng sequence which contains precisely m, entries 
equal to F , . It was noted in [ 7] that for M = (1, 1, 1, ***)f S M is com-
plete but the deletion of any two terms of S M destroys the completeness. 
Further, it was shown in [1] that for any fixed a, if M = (a, &9 a9 ***) 
then some finite set of entries can be deleted from S M so that the resulting 
sequence Is not complete. This result can be strengthened as follows (where 
T denotes (1 + N/"5)/2). 
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Theorem 1. If 

[Apr. 

Emk 
k=l 

T k < oo, 

then some finite se t of e n t r i e s of S M can be deleted so that the resu l t ing s e -

quence i s not completee 

Proof. The proof u s e s the ideas of C a s s e l s [2 ] . Let ||x|| denote 

min Ix - n | where n r anges over all i n t ege r s . It i s well known that F can 

be explici t ly wr i t ten a s 

F = -J- (rn 
n JZ - r ) " n ) 

Thus 

£ llBTll = £ mkllFkHI 
sQS. M k=l 

= S m k " v - F 
k l | L k ' xk-f l l ! 

k=l 

^ 5 k=i 
m, 

(T2 + 1) ( _ T ) - k 

T2 + 1 

r\l5 2 m k r " k " °° 
k=l 

by the hypothesis of the theorem. Hence, by delet ing a sufficiently l a rge in-

i t ial segment of S M , we can form a sequence S* for which 
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|sr| | <- 1/4 
s e S M 

But r is Irrational so that for Infinitely many integers m? we have 

||mr|| > 1/4. 

The subadditivity of || • || shows that such an m cannot belong to P(S*L). 

It follows in particular that if 1 < 9 < r and m, = 0(0 ) then S M 

f: 
from S M can result in a sequence which is not complete, 

This proves the theorem, 
It follows in partici 

is not "strongly complete/1 i .e . , the deletion of some finite set of entries 
S M can result in a sequence which is not complete* 
In the other direction, however, we have the following result. 
Theorem 2. Suppose for some € ^ 0 and some k0s m, > £r for 

ko* Then S M is strongly complete. 
Proof. For a fixed integer t, let Mf denote the sequence 

(0, 0, . . . f 09 m t + r m t + 2 , . . . ) 

It is sufficient to show that SM? Is complete. We recall the identity 

<*> Fn+2k + Fn-2k = L 2k F n ' 

where L is the sequence of integers defined by Ln +2 = Ln+1 + L n 5 n ~ °9 

with L0 = 2, Lt = 1. It is easily shown that F r ^ TT and 

T > 1 r 
L r " 2 T 

for r ^ 0. We can assume without loss of generality that t > k0 and €r 
> 2. Choose £ >4/€ and n > t + 2# . We can form sums of pairs ^R+2^ + 

F _2, from SM? to get at least €r "" copies of L 2 . F (by (1)) for 0 < k 
^ #. Since €T > €T > 2 then these sums can be used to form all the 
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multiples uF 5 

Since 

k=0 

T > 1 r 

L r ~ 2 T • 

then we have formed all multiples uF , 

i ^ ^ €(£ + 1) n 

The same argument can be applied to the terms F - ?, (which are distinct 
from the terms previously considered) to form all multiples vF - , 

- ^ ^ €ft + 1) n+l 

Of course9 F and F - are relatively prime so that the set of integers of 
the form xF + yF - , x and y nonnegative integers, contains all integers 

^ F n F n+ l " F n ~ Fn+1 {cL [ 8 ] ) e F o r a n y i n t e g e r 

Nj = F n F n+ l - F n " Fn+1 + *• X * J * F n + 2 • 

the coefficients x. and y. in a representation 

N. = x.F + y.F ,. j j n J ] n+l 

certainly satisfy x. ^ F + - , y. ^ F . Thusf x.? y. < T < 2 T . Since 
u and v can range up to 
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then by using the multiples of F Q and F + 1 we have just considered* we 
can represent all the N., 1 ^ j ^ F n + 2 > as elements of P(SM ?). Finally, 
since we have used at most er11" copies of F ., 2 ^ i, in this process^ 
we still have available at least eCr11* - T*1""2) > i copies of F . t o use in 

* n+i 
forming sums in P(SM ?) . By adding sequentially a single copy of F + . , 
I = 2, 3, 4, *e • , to the N.» It is not difficult to see that all integers ^Ni 
belong to P(SM ?) . Thus, SM? is complete and the theorem is proved. 

It should be pointed out that the condition 

Z*»J 
-k 

m. T = °° 
k=l 

Is not sufficient for the comple teness of S M a s can be seen from the example 

in which 

m. 
i [ r k ] if k = 2n for 

Lk 0 otherwise 
some n 

However* the proof of Theorem 2 directly applies to show that if m / r is 
monotone and 

then S M is strongly complete. 
It would be of interest to investigate refinements of these questions. Of 

coursef similar results and questions arise for other P - V numbers be-
sides r but we do not pursue these here* 
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