REFERENCES

1. V. E. Hoggatt, Jr., "A New Angle on Pascal's Pyramid," Fibonacci Quarterly, Vol. 6 (1968), pp. 221-234.
2. V. C. Harris and C. C. Styles, "A Generalization of Fibonacci Numbers," Fibonacci Quarterly, Vol. 2 (1964), pp. 277-289.
3. V. E. Hoggatt, Jr., and Marjorie Bicknell, "Diagonal Sums of Generalized Pascal Triangles," Fibonacci Quarterly, Vol. 7 (1969), pp. 341-358.
4. V. E. Hoggatt, Jr., "Convolution Triangles for Generalized Fibonacci Numbers," Fibonacci Quarterly, Vol. 8 (1970), pp. 158-171.
5. Stephen Mueller, "Recursions Associated with Pascal's Pyramid," Pi Mu Epsilon Journal, Vol. 4, No. 10, Spring 1969, pp. 417-422.
6. Stanley Carlson and V. E. Hoggatt, Jr., "More Angles on Pascal's Triangle," Fibonacci Quarterly, to appear.
7. Melvin Hochster, "Fibonacci-Type Series and Pascal's Triangle," Particle, Vol. IV (1962), pp. 14-28.
8. V. E. Hoggatt, Jr., "Fibonacci Numbers and Generalized Binomial Coefficients," Fibonacci Quarterly, Vol. 5 (1967), pp. 383-400.
[Continued from page 292.]

The total number of distinct arrangements of the N groups combined is obtained by summing the expression in (7) over all possible values of $\left(k_{1}, k_{2}\right.$, \ldots, k_{N-1}, i.e., over the set $\mathrm{S}_{\mathrm{N}-1}$. But the total number of distinct arrangements is also equal to

$$
G\left(\sum_{j=1}^{N} M_{j}\right)
$$

The identity in (3) then follows from $G(n)=F(n+1)$.

