## A GENERAL Q-MATRIX

JOHN IVIE
University of California, Berkeley, California

## 1. INTRODUCTION

Let $F_{n}$ be the $n^{\text {th }}$ Fibonacci number and let

$$
\mathrm{Q}=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)
$$

This matrix has the interesting property that

$$
Q^{n}=\left(\begin{array}{ll}
F_{n+1} & F_{n} \\
F_{n} & F_{n-1}
\end{array}\right)
$$

In this paper, we introduce a general type of Q-matrix for the generalized Fibonacci sequence $\left\{f_{n, r}\right\}$, and some of the interesting properties of the $Q$ matrix are then generalized for these sequences. An extension to the general linear recurrent sequence is also given. See [1] for more information on the Q-matrix proper.

## 2. THE MATRIX $Q_{r}$

Recall that the Fibonacci numbers $\left\{F_{n}\right\}$ are defined by $F_{n+2}=F_{n+1}$ $+F_{n}$, with $F_{0}=0, F_{1}=1$. Now let us define the generalized Fibonacci sequences $\left\{f_{n, r}\right\}$ for $r \geq 2$ by $f_{n, r}=f_{n-1, r}+\cdots+f_{n-r, r}$, with $f_{0, r}=$ $f_{1, r}=\cdots=f_{r-2, r}=0, f_{r-1, r}=1$. Note that $r=2$ gives the Fibonacci numbers.

Now define a matrix $Q_{r}$ by

$$
Q_{r}=\left(\begin{array}{cccccc}
1 & 1 & 0 & \ldots & 0 \\
1 & 0 & 1 & \ldots & 0 \\
\vdots & 0 & 0 & 1 & \cdots & 0 \\
\vdots & 0 & & \ldots & 0 & 1 \\
1 & 0 & 0 & 0 & \cdots & 0
\end{array}\right)
$$

Note that $Q_{r}$ is just the $r-1$ identity matrix bordered by the first column of $1^{1} \mathrm{~s}$ and last row of $0^{\circ} \mathrm{s}$. In order to motivate this definition, note that

$$
\left(\begin{array}{ll}
F_{n+1} & F_{n} \\
F_{n} & F_{n-1}
\end{array}\right) Q_{2}=\left(\begin{array}{ll}
F_{n+2} & F_{n+1} \\
F_{n+1} & F_{n}
\end{array}\right)
$$

We have thus defined $Q_{r}$ so that this property holds for the matrix

$$
\left(f_{n+r+1-i-j}, r\right), \quad 1 \leq i, j \leq r
$$

Theorem 1.

$$
Q_{r}^{n}=\left(\begin{array}{cccc}
f_{n+r-1, r} & f_{n+r-2, r} & \cdots & f_{n, r} \\
\sum_{i=0}^{r-2} f_{n+r-2-i, r} & \sum_{i=0}^{r-2} f_{n+r-3-i, r} & \cdots & \sum_{i=0}^{r-2} f_{n-i-1, r} \\
\vdots & \vdots & & \vdots \\
f_{n+r-2, r} & f_{n+r-3, r} & \cdots & f_{n-1, r}
\end{array}\right)
$$

(the general term is

$$
q_{j k}=\sum_{i=0}^{r-j} f_{n+r-i-k-1, r}
$$

Proof. Let $r$ be fixed and use induction on $n$. This is trivially verified for $\mathrm{n}=1,2$. Assume true for n , and consider
$Q_{r}^{n+1}=Q_{r}^{n} Q_{r}=\left(\begin{array}{cccc}f_{n+r-1, r} & f_{n+r-2, r} & \cdots & f_{n, r} \\ \sum_{i=0}^{r-2} f_{n+r-2-i, r} & \sum_{i=0}^{r-2} f_{n+r-3-i, r} & \cdots \sum_{i=0} f_{n-i-1, r} \\ \vdots & \vdots & & \vdots \\ f_{n+r-2, r} & f_{n+r-3, r} & \cdots & f_{n-1, r}\end{array}\right)$.
(equation continued on next page.)

$$
\left(\begin{array}{cccccc}
1 & 1 & 0 & & \cdots & 0 \\
1 & 0 & 1 & & \cdots & 0 \\
\vdots & 0 & 0 & 1 & \cdots & 0 \\
\vdots & 0 & & \cdots & 0 & 1 \\
1 & 0 & 0 & 0 & \cdots & 0
\end{array}\right)
$$

which completes the proof of the theorem.
We write this matrix in neater form by letting $P_{r}=\left(f_{r-i-j+2, r}\right), 1 \leq$ $i$, $j \leq r$, where $f_{-n, r}$ is found by the recursion relationship. Then

$$
P_{r} Q_{r}^{n}=\left(\begin{array}{ccc}
f_{n+r}, r & \cdots & f_{n+1, r} \\
\vdots & & \vdots \\
f_{n+1, r} & \cdots & f_{n=r+2, r}
\end{array}\right)
$$

An interesting special case of our theorem occurs when $r=3$, where the numbers $\left\{f_{n, 3}\right\}$ are the so-called Tribonacci numbers of Mark Feinberg.

## 3. APPLICATIONS

We now develop some of the interesting properties of the matrices $Q_{r}^{n}$ and $P_{r} Q_{r}^{n}$, which in turn are generalizations of interesting properties of the matrix $Q^{n}$, which is the special case when $r=2$ 。

It is readily calculated that

$$
\operatorname{det}\left(P_{r} Q_{r}^{n}\right)=\left(\operatorname{det} P_{r}\right)\left(\operatorname{det} Q_{r}\right)^{n}=(-1)^{(2 n+r)(r-1) / 2}
$$

For $r=2$, we have the corresponding Fibonacci identity

$$
F_{n+1} F_{n-1}-F_{n}^{2}=(-1)^{n+1}
$$

The traces of $Q_{r}^{n}$ and $P_{r} Q_{r}^{n}$ are also readily seen to be

$$
\begin{aligned}
& \operatorname{Tr}\left(Q_{r}^{n}\right)=\sum_{j=1}^{r}\left(\sum_{i=0}^{r-j} f_{n+r-i-j-1, r}\right)=\sum_{j=1}^{r} j_{n+r-j-1, r} \\
& \operatorname{Tr}\left(P_{r} Q_{r}^{n}\right)=f_{n+r, r}^{-}+f_{n+r-2, r}+\cdots+f_{n-r+2, r}
\end{aligned}
$$

For $\mathrm{r}=2$, we have

$$
\operatorname{Tr}\left(Q^{n}\right)=F_{n-1}+F_{n+1}=L_{n}
$$

The characteristic polynomial of $Q_{r}$ is $x^{r}-x^{r-1}-\cdots-x-1$, which is also the auxiliary polynomial for the sequence $\left\{f_{n, r}\right\}$. Since $Q_{r}$ satisfies its own characteristic equation, $Q_{r}^{r}=Q_{r}^{r-1}+\cdots+Q_{r}+I$, hence

$$
Q_{r}^{r n}=\left(Q_{r}^{r-1}+\cdots+Q_{r}+I\right)^{n}
$$

Expanding by the multinomial theorem and equating elements in the upper right-hand corner yields

$$
\mathrm{f}_{\mathrm{rn}, \mathrm{r}}=\sum_{\substack{\mathrm{k}_{1}, \cdots, \mathrm{k}_{\mathrm{r}} \\ \mathrm{k}_{1}+\cdots+\mathrm{k}_{\mathrm{r}}=\mathrm{r}}} \frac{\mathrm{n!}}{\mathrm{k}_{1}!\cdots \mathrm{k}_{\mathrm{r}}!} \mathrm{f}_{\mathrm{k}_{1}+2 \mathrm{k}_{2}+\cdots+(\mathrm{r}-1) \mathrm{k}_{\mathrm{r}-1, \mathrm{r}}}
$$

For $r=2$, we recover the familiar

$$
F_{2 n}=\sum_{k=0}^{n}\binom{n}{k} F_{k}
$$

Now consider the matrix equation $Q_{r}^{m+n}=Q_{r}^{m} Q_{r}^{n}$; equating elements in the upper left-hand corner yields

$$
f_{m+n+r-1, r}=\sum_{j=1}^{r}\left(\sum_{i=0}^{r-j} f_{m+r-j, r} f_{n+r-2-i, r}\right)
$$

and for $r=2$, we have $F_{m+n+1}=F_{m+1} F_{n+1}+F_{m} F_{n}$. Note that several other general identities can be obtained in this way.

We now use the matrix $Q_{r}$ to show that the product of two elements of finite order in a non-abelian group is not necessarily of finite order. This generalizes a counterexample given by Douglas Lind in [2], which results for $r=2$. Let

$$
R_{r}=\left(\begin{array}{cccc}
-1 & & 0 & \\
& 1 & & \\
0 & & \cdot & \\
& & & 1
\end{array}\right), \quad S_{r}=\left(\begin{array}{ccccc}
-1 & -1 & & & 0 \\
1 & 1 & & & 0 \\
\vdots & 0 & 0 & 1 \\
1 & & & 0
\end{array}\right)
$$

be elements of the group of invertible square matrices, then

$$
R_{r}^{2}=S_{r}^{r+1}=I
$$

so $R_{r}$ and $S_{r}$ are of finite order, but $\left(R_{r} S_{r}\right)^{n}=Q_{r}^{n} \neq I$, for all $n$, by Theorem 1, so that $R_{r} S_{r}$ is not of finite order.

It is of some interest to observe that the matrices $Q_{r}^{n}$ give explicit examples of Anosov toral diffeomorphisms. That is, viewed as a linear map on $\mathbb{R}^{\mathrm{r}}, \mathrm{Q}_{\mathrm{r}}^{\mathrm{n}}$ preserves integer points and is invertible with $\operatorname{det} \neq 1$, hence induces a diffeomorphism on the quotient space $\mathbb{R}^{r} / \mathbb{Z}^{r}$. The hyperbolic toral structure follows, since $Q_{r}^{n}$ has no eigenvalue of modulus 1 , using an argument via the characteristic polynomial as in [3]. Any such Anosov toral diffeomorphism comes from a linear recurrent sequence whose auxiliary equation is given by the polynomial of the diffeomorphism.

## 4. THE GENERAL LINEAR RECURRENT SEQUENCE

We now show how a Q-type matrix can be determined for the general $r^{\text {th }}$ order linear recurrence relation

$$
u_{n+r, r}=a_{r-1} u_{n+r-1, r}+\cdots+a_{0} u_{n, r}
$$

with initial values $u_{i}=b_{i}$, $i=0,1, \cdots, r-1$, where $b_{0}, b_{1}, \cdots, b_{r-1}$
are arbitrary constants. This is done in a sequence of successive generalizations.

Define a sequence $\left\{f_{n, r}^{*}\right\}$ by $f_{n+r, r}=f_{n+r-1}^{*}+\cdots+f_{n, r}^{*}$, with initial values $f_{i}^{*}=b_{i}, 0 \leq i \leq r-1$. (Note that $b_{0}=b_{1}=\ldots=b_{r-2}=0, b_{r-1}$ $=1$ give the $\left\{f_{n, r}\right\}$ defined previously.) To find a Q-type matrix for the $\left\{\mathrm{f}_{\mathrm{n}, \mathrm{r}}^{*}\right\}$, we need the following identity:

$$
f_{n, r}^{*}=\sum_{i=1}^{r} b_{i-1} \sum_{j=1}^{i} f_{n-j-1, r},
$$

which is easily proved by induction on $n$. Now let $B=\left(b_{r-1} \cdots b_{0}\right)$, then

$$
\begin{gathered}
B Q_{r}^{n}=\left(f_{n+r, r}^{*} \cdots f_{n+1, r}^{*}\right) \\
B Q_{r}^{n-1}=\left(f_{n-r+1}^{*}, \cdots, f_{n, r}^{*}\right), \cdots, B Q_{r}^{n-r+1}=\left(f_{n+1, r}^{*} \cdots f_{n-r+2, r}^{*}\right),
\end{gathered}
$$

by our identity. Thus, we have the following Q-type matrix for our sequence $\left\{\mathrm{f}_{\mathrm{n}, \mathrm{r}}\right\}$ :

$$
\left(Q_{r}^{*}\right)^{n}=\left(\begin{array}{c}
B Q_{r}^{n} \\
\vdots \\
\bullet \\
B Q_{r}^{n-r+1}
\end{array}\right)=\left(\begin{array}{ccc}
f_{n+r}^{*}, r & \cdots & f_{n+1, r}^{*} \\
\vdots & & \vdots \\
\cdot & & \cdot \\
f_{n+1, r}^{*} & \cdots & f_{n-r+2, r}^{*}
\end{array}\right)
$$

Now consider the sequences $\left\{u_{n, r}^{*}\right\}$ defined by

$$
u_{n+r, r}^{*}=a_{r-1} u_{n+r-1, r}^{*}+a_{r-2} u_{n+r-2, r}^{*}+\cdots+a_{0} u_{n, r}^{*}
$$

with initial values $u_{n, r}^{*}=0,0 \leq n \leq r-2, u_{r-1, r}^{*}=1$. As in Theorem 1, we have the following $Q$-type matrix for the sequence $\left\{u_{n, r}^{*}\right\}$ :

$$
\left(R_{r}^{*}\right)^{n}=\left(\begin{array}{cccc}
u_{n+r-1, r}^{*} & u_{n+r-2, r}^{*} & \cdots & u_{n, r}^{*} \\
\sum_{i=0}^{r-2} a_{r-2-1} u_{n+r-2-1, r}^{*} & \sum_{i=0}^{r-2} a_{r-2-i} u_{n+r-3-i, r}^{*} & \cdots \sum_{i=0}^{r-2} & a_{r-2-i} u_{n-i-1, r}^{*} \\
\vdots & \vdots & a_{0} u_{n+r-3, r}^{*} & \cdots \\
a_{0} u_{n+r-2, r}^{*} & a_{0} u_{n-1, r}^{*}
\end{array}\right) .
$$

which is proved by induction on $n$.
We now piece these two partial results together to derive a general Q-type matrix for the general linear recurrent sequence $\left\{u_{n, r}\right\}$ defined in the beginning of this section. To do this, we need the following identity:

$$
u_{n, r}=\sum_{i=1}^{r} b_{i-1} \sum_{j=1}^{i} a_{i-j} u_{n-j-1, r}^{*}
$$

which is proved by induction. As before, let $B=\left(b_{r-1} \cdots b_{0}\right)$, then by our identity,
$B\left(R_{r}^{*}\right)^{n}=\left(u_{n+r, r} \cdots u_{n+1, r}\right), \cdots, B\left(R_{r}^{*}\right)^{n-r+1}=\left(u_{n+1, r} \cdots u_{n-r+2, r}\right)$.

Hence, we have the following.
Theorem 2.

$$
\left(R_{r}\right)^{n}=\left(\begin{array}{c}
B\left(R_{r}^{*}\right)^{n} \\
\vdots \\
B\left(R_{r}^{*}\right)^{n-r+1}
\end{array}\right)=\left(\begin{array}{ccc}
u_{n+r, r} & \cdots & u_{n+1, r} \\
\vdots & & \\
u_{n+1, r} & \cdots & u_{n-r+2, r}
\end{array}\right)
$$

Thus, there is a general Q-type matrix for anylinear recurrent sequence.

## REFERENCES

1. V. E. Hoggatt, "A Primer for the Fibonacci Numbers," Fibonacci Quarterly, Vol. 1, No. 3, Oct., 1963, pp. 61-65.
[Continued on page 254.]
