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The sequence of Fibonacci numbers is defined by ¥y, = 0, F; =1, and Fn+2 = Fn +
F (n = 0), and it is well known that

n+l
m
1) Fn = E (n - 1s_ S) » where m is the greatest integer =(n - 1)/2.
s=0
It can be shown, if we allow negative values of the subscript n that
_ n-1
(2) F = (-1) -F .
Any sequence satisfying the recurrence relation
3) tn+2 = tn + tn+1

is called a "generalized Fibonacci sequence.' As soon as the values of any two consecutive

terms tn = p and tn 4 =d have been chosen, one can prove by induction that

1

(4) t =p-F +q°F and t = (p-F

s
s-1 s n-s SarF)e (D7

s+1

Note that the subscript n is assumed to run from -% to + o in the generalized Fibonacci
sequences as well as in the sequence of Fibonacci numbers.
a., Whenever t and t
n n+

1
or negative and their absolute value increases with s.

have the same sign, all terms tn +5 (s = 2) are positive

Let us take, for example, the sequence tn = afn, where n € (-», 4+ and « is a pos-
itive real number =1: every term is positive and they increase to infinity.
(Since ty =1, t =a and t, = o®, a must be the positive root of the ''quadratic

Fibonacci equation" o% - @ -1 = 0, thatis,

o =

1 +5
2

Note that the sequence tn = ﬁn, where

365
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is the negative root, also satisfies the recurrence (3).)
b. If one of the terms tn and tn 1 is positive and the other negative, and if we as-
sume that ‘tnl > |tn +1! , then ‘ ltnl - Itn "']I and the following terms have alternated

signs.

tn+2‘ =

Let us take, for example, the sequence tn = ﬁn, where n € (<0, +9 and B is neg-
ative and smaller than 1: the terms of this sequence have alternated signs and their abso-
lute value tends to zero when n goes to infinity.

c. In a generalized Fibonacci sequence where positive and negative terms alternate,
if there is a term tn 41 such that tn +1i > ltni, both tn " and tn +2 will have the same
sign. So tn 1 will start an infinite sequence all of whose terms are either positive or neg-
ative, with their absolute values increasing to infinity.

d. In a sequence with alternating positive and negative terms, if there is a term tn 1
such that |t +]J = |tng, the next term is 0; the terms of this sequence are clearly multiples
of the Fibonacci numbers.

Except the sequencex o and ﬁn defined above, the generalized Fibonacci sequences

have those two infinite parts: the lower part with alternating terms decreasing in absolute

value, followed by the upper part whose terms have the same sign and increase in absolute

value.

Let € denote any positive or negative real number. It can be shown that a sequence
where ty = o and t; = o + € has to start with alternating positive and negative terms: for
€ arbitrarily small, and for n large enough, in

> a_n

- -1
t,=a  + ()T eF

e F
n

On the otherhand, a sequence where t; = 8% and t; = ! + € ends with terms increas-
ing in absolute value, all of them being either positive or negative: for e arbitrarily small
and for n large enough, in

t =Bn+€-Fn, Ie-Fn n

n

>|B

We shall call "primary generalized Fibonacci sequences' those sequences which have

at least one term equal to 1. It is no loss of generality to assume ty = 1. (Among Fibonacci
numbers, three (F-l’ Fy and F,) are equal to 1: any may be the chosen t;. ) For these

sequences we may write ty = 1, t; = g and (4) becomes

(5) tg=F,, +aq*F and t _ = (F —q-FS)-(-—l)S.

s -s s+1

In this paper, we intend to express the natural numbers 1, 2, 3, .. as sums of dis-

tinct non-consecutive terms of primary generalized Fibonacci sequences and we shall obtain
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a coherent system of numeration that could be used in arithmetical operations.

We assumed ty = 1; all other terms are still undetermined; they might all be posi-
tive or negative or theymight alternate in sign, and their values might increase ordecrease;
the recurrent relation (3) will be the only rule. Thus their expression is of an algebraic na-
ture; the value of ty only has been fixed. Any other given term may take different values
and in general, it is not possible to determine the sum of several given terms, when the se-
quence they are taken from is unknown. We shall see that the groups of terms belonging to

the Generalized Fibonacci Numeration constitute an exception.

The natural numbers will be constructed by successive additions of the unit t). More
precisely, two rules will be used, one for consecutive terms, namely tX + tx+1 = tx+2 and

the other for equal terms, namely 2t = t o+ (tx_1 + tx-z) =toq tX_

Two different notations are possible for a number N.

9"

In the first one, let tx be the term with the highest subscript and t_S that with low-
est subscript used in the expression of N. For each of these terms and for all terms be-
tween tx and t—s (taken from left to right), let us use the digit 1 for the terms involved
in the expression of N and the digit 0 for every other term. For convenience of reading,
we shall distinguish by punctuation the digit corresponding to t; and arrange the other digits
in groups of four.

In the second one, the terms involved in the expression of N only are listed as sub-
scripts of the letter t.

For instance, both 10.0100.0.1001.01 and tg,3,4,-4,-¢ Will represent the number
N = 23.

Later on, when arithmetical operations are performed, it may be convenient to avoid
the letter t, the expression of N being then shortened to the sequence of subscripts of t.

Applying these rules, we write successively

= t,
=ttt =ty

= b, tth =t

ta, 2 Tt = t2,0,2

= ty,0,—2 +tp = bty (b +E) Fty =ty 4 4
= t3,-1,-4 Tty = t3,1,4

= t3,1,-4 Tty = b4,

T S N I
1}

These numbers are the groups of terms belonging to the Generalized Fibonacci Numeration
(G. F.N.): they represent always the same number and they do not depend on the primary
generalized Fibonacci sequence which has been chosen. The other groups of terms do not
have this property. One should be able to recognize those particular graips of terms, and
so we shall describe them.
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We have first to explain how the joined Fibonacci terms taken from various undeter-
mined sequences can yield the same value when added up in a formula of the G. F. N.

The above formulas were constructed by successive additions of the unit t, and, ac-
cording to (4) and (5),

(6) tgp = Fy4+q-Fy =1,

Let us look for the part played by ty) = F.y =1 and t; = q+-F; = q, respectively in the
construction of the numbers in the G. F.N.
Formula (6) consists of two parts: the first part, F4 = 1, generates the formula for

N when the terms tn are given the value Fn The part played by t; = q is 0; it is

-1°
represented in ty by q-Fy and in N by a similar expression, when the terms tn are given
the value Fn'

Example a. For tn = Fn-l’ tg,3,-1,-4,-6 = 23

tg,3,-1,-4,6 = T5s + Fo + F_o + F_5 + F_y4
F; + 2F5;  according to (2) and
Fg + F3 = 23 .

Il

Example b. For t =T , tg3, 1,.4,6 = O

te,8,-1,-4,-6 = Fg+ Fg + F4 + F 4 + F_g
F3 + Fy - F;4 according to (2), then by adding Fj, = 0:
F3+F1+F0—F4=F4—F4=0.

1

n

We shall now describe the numbers in the G. F.N. The reader is advised to construct
the table of the first 50 natural numbers represented by the subscripts of t. (Thistable can
also be found hereafter.) To be clearer, all terms with the same subscript will be written
in the same column of the table when they are involved in the expression of several numbers.

Description of the numbers in the G. F. N. Every number is built from one or more

independent groups of terms. First we have to describe these groups.

A. The symmetric groups contain

a) the term t; =1,

b) the symmetric pairs with even subscripts (e.g., t3, —2s tg,—4> ***). Thesepairs
stand for the numbers 3, 7, 18, -+, thatis the Lucas numbers L2n' One or more sym-
metric group (e.g., tg,o,-¢> t3,4,-4,-8)-

When some symmetric pairs -and the term t; get together without gap, they
form the saturated symmetric groups (e.g., tg,4,2,0,-2,-4,-6)- These saturated groups
stand for the numbers 4, 11, 29, «-+, that is the numbers L2n+1'

(Actually, the sum of a symmetric pair and of the corresponding saturated sym-

metric group gives rise to the next symmetric pair: tg, _g + tg,4,2,0,-2,-4,-6 = tg’_g-)
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B. The asymmetric groups are distinguished by their extreme terms, the upper one

with a positive odd subscript u(t,) and the lower one with negative and even subscript u + 1
(t_ W +1)). The intermediate terms characterize the varieties of asymmetric groups:

a) In the typical asymmetric group, all intermediate terms have negative odd sub-

scripts following one another without gap from t—l to t (w-2)° These numbers arise by

adding the unit t; to a saturated symmetric group:

bp +t = t, 25  tg2,0,-2,-4 tt = b5, 1,3, 6

b) In the usual asymmetric group, one or more intermediate terms have a positive

subscript. These terms replace the symmetric terms with negative odd subscript. By ad-

ding the saturated symmetric group t the intermediate term t2n re-

2n,2n-2,¢ .. ,-2n°
places the term with negative symmetric subscr ipt:

+1

ty, 1,-3,-5,-1,-10 * ta,2,0,-2,-4 = to,5 4,3, 7,10«

So it is possible to get the asymmetric saturated group (e.g., ty,1,5,3,1,-10) Where all the

intermediate terms have undergone this substitution.
The intermediate terms of the usual asymmetric group are the next ones: ¢t +1°

tigr oo byog)

c) In the altered asymmetric group, the presence of an intermediate term with pos-

itive even subscript coincides with the suppression of the terms of odd and lower subscript
(in absolute value). To change an asymmetric group to such an extent, one has to add the

asymmetric saturated group, immediately prior to the new term with even subscript:

t11,9,-1,-3,-5,-1, 12 + t5,3,1,¢ = t1,9,6,-7,-12 -

C. The associated groups. We have seen that symmetric pairs can join with or with-

out t; in order to form symmetric groups. Symmetric pairs may also surround the terms
of an asymmetric group:
te,—¢ * t3,1,-4 = 5,3,1,-4,-6 -

Usually, nothing of this type occurs with asymmetric groups: the presence of the in-
termediate terms prevents it. Yet in the altered asymmetric group, the interval between the
new term with even subscript and the terms with negative subscripts left over, this interval

may be adequate for another group of terms:
ty,6,-7,-10 * t1,0,-4 = t9,6,4,0,-4,-7,-10 -

Estimation of the numbers in the G. F. N, In presence of joined generalized Fibonacciterms,

when we have identified a number of the G. F. N., we have to find out its precise value.
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A primary generalized Fibonacci sequence may be chosen so as to assign a fixed value to
each term as we did with Fibonacci numbers. However, in the next step we had to add or
subtract the terms with negative subscript, according to their parity. The difficulty in re-
storing the formula is still more significant.

Let us try to estimate these formulas by another method involving the terms with non-
negative subscript. The precise estimation of a number has to be made by a reckoning pro-
cess, in spite of the undetermined value of the components.

a) We did assign to t; the value 1 and to the symmetric pairs the values 3, 7, 18,
+++, which are those of Ly, Ly, Lg, -++, in the sequence of Lucas numbers. Let us relate
these values to the terms with positive subscript ty, t;, tg «++ in these pairs. Then we
may disregard the terms with negative subscript and all the symmetric groups will be cor-
rectly estimated.

b) Is it likewise possible to estimate the asymmetric groups?

1. Let ¢y =1, t3 =4, t; =11, -+ in other words, the Lucas numbers L, Lg,
Ly, «++; these values were already assigned to the symmetric saturated groups; they
are an underestimation for the typical asymmetric groups obtained by adding the unit
tg to the symmetric saturated groups.

2. An intermediate term with positive subscript is substituted to the one with neg—
ative subscript by adding a symmetric saturated — and thus correctly estimated —
group. Hence the underestimation of the asymmetric group persists.

3. When an underestimated asymmetric group is altered by adding an asymmetric
saturated group that is likewise underestimated, an intermediate term with positive

and even subscript appears: this term makes up for the two underestimations of one

unit tg.

As a matter of fact, the values Ly, Lg, *°*, LZn—l have been assigned to the
terms with positive subscript t;, t3, +-+, t2n—1 and the value LZn to the new term
with even subscript, th" Now, L2n - Ly + Ly +ees o+ L2n—1) =1Ly = 2.

Therefore, the altered asymmetric group is correctly estimated and the fore-
seen estimation of the nurmber N is possible.

i. To the existing terms with positive subscript, we assigh the next values: to
ty the value 1; to the next terms ty, tys t3, **-, respectively, the values
1, 3, 4, 7, -+ of the Lucas numbers.

ii. It remains to add one unit to the sum of these estimations when the number
N contains an unaltered asymmetric group. A single one only can exist in
the expression for the number N. Therefore, this unit depends on the term
with lowest positive subscript: when this subscript is odd, the unit has to be
added.

Expression of a natural number by the G. F. N. We now possess all required elements

to find such an expression. Let us consider, for instance, the numbers 59 and 87.
59 = tg+t; + 1 t; being the term with lowest positive subscript, the unit is needed

to correct the underestimation.
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tg belongs tothe symmetric pair tg, _g; t5 belongs to the typical symmetric group ts, -1, -3, —¢°

Hence the formula: ts’ 5, ~1, -3, —6, -8 *

87 =ty + 11

correct the underestimation.

87 =t9+t4+4:

terms is not allowed.

87

ty +tg +ty + 1

The last unit has to be t; .

87 = tg + ty + ty + to

We cannot use ts: 5 being odd, one unit more would be needed to

For the same reason, we cannot use tz and the use of adjoining

ty and t; belong to the altered asymmetric group ty 4,_5,-7,-10 ¢ tz and t; belong to the

saturated symmetric group tp o,_p . Hence the formula: tg,4,9,0,-2,-5,-7,-10

Remark. The recurrence relation (3) prevented us from using adjoining terms.

An

investigation of the numbers in the G. F.N. will show one more peculiarity of this numeration:

ty does never follow directly a term with odd subscript.

THE FIRST 50 GENERALIZED FIBONACCI NUMBERS.

1: 0
2: 1 -2
3: P
4: .0, -2
52 . .1 -4
6: 1. . -4
7: 4 . -4
8: 4 . 0. -4
9: 4 1. . -2 -4
10: 4 2 . -2 -4
11: 4 2 .0, -2 -4
12: 5. . .1 -3
13: 5, 1. -3
14: 5. 2 .. -3
15: 5. . 0. -3
16: 5, =1
17 5, 1. .
18: 6 . . .
19: 6 . 0.
20: 6 1. . -2

(Continued on the following page.)

-6
-6
-6

-6
-6
-6
-6
-6

21:
22:
23:
24:
25:
26:
27;
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:

N 9 9 -1 -3 -1 =3 =3 =31 -3 =3

[=2 JN=r B« PR PR« PR @ PR« I = P = )

PN

BB B B

. .1

List of Subscripts.

-2 .
-2

-2 -4,
-2 -4,
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41
42:
43:
44:
45;
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7 5. . .-1 -3 . -8 46: 7 b5, 3 1. . . =8

7 5. 1. . -3 . -8 47: 8 . . . -8

7 5. . -3 . -8 48: 8 . . 0. . -8

7 5. 2 .0. -3 . -8 49: 8 1. -2 -8

7 5. 3 -1 -8 50: 8 . 2 . -2 . -8
—e

[Continued from page 364. ]

Example: F; = 5 and 2:3-7-18-47 = 35,532 = 2 (mod 5) .

The congruence is reminiscent of the congruences of Wilson and Fermat.

It is expected that many other interesting and novel consequences follow from the ex-

tended Hermite theorems (6.2) and (7.1) giving arithmetic information about Fibonacci, Lucas

and other similar numbers.

10.

11,
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