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1. INTRODUCTION AND SUMMARY

Consider the sequence defined by

(1.1) u = 0, y =1, u =u_ + 2u = 1).

n+1 n n-1

It follows at once from (1.1) that

(1.2) u = %(z“ - Y, w v, = 2R

The first few values of u, are easily computed.
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It is not difficult to show that the sums

k
(1.3) E eiui (k = 2, 3: 4’ "') ’

where each € = 0 or 1, are distinct. The first few numbers in (1.3) are

1, 3, 4, 5, 6, 8, 9, 11, 12, 14, 15, 16, 17, 19, 20, *°* .
Thus there is a sequence of '"missing' numbers beginning with
(1.4) 2, 7, 10, 13, 18, 23, 28, 31, 34, 39, *-- .

In order to identify the sequence (1.4) we first define an array of positive integers R in
the following way. The elements of the first row are denoted by a(n), of the second row by
b(@), of the third row by c(n). Put

* Supported in part by NSF Grant GP-17031,
499



500 REPRESENTATIONS FOR A SPECIAL SEQUENCE [Nov.

a(l) = 1, b(1) = 3, c(l) = 2,

Assume that the first n - 1 columns of R havebeen filled. Then a(n) is the smallest

integer not already appearing, while

(1.5) b(n) = a(n) + 2n
and
(1.6) cin) = bn) -1 .

The sets {a(n)}, {b(n)} s {c(n)} constitute a disjoint partition of the positive integers. The
following table is readily constructed.

3y 4} 6 6| 7] 8| 9|10]11]12
5} 6] 9112{15{16 | 17120 |21 |22
11114 119]24129|32|35]|40 43|48
10113118 (23|28 31 |341{39]42]47
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The table suggests that the numbers c(n) are the '""missing" numbers (1.4) and we shall
prove that this is indeed the case.
Let Ak Denote the set of numbers

N =nu tu ot + oy
1.7 2

25k=k1<k2<...<k

and r =1, 2, 3, ***. We shall show that

(1.8) Ageyn = 35200 1 abe(y) & = 0
and
(1.9) Agyy = Pa) U beqy & = 1),

where N denotes the set of positive integers.
If N is given by (1.7), we define

(1.10) e(N) = u

kr—l k -1 kr—-l *
Then we shall show that r
(1.11) e(a@) = n
and
(1.12) e(bn) = a@m).

Clearly the domain of the function c(n) is restricted to a(N) U b(ﬁ). However, since, as
we shall see below, (b{) -2)€ a(N) and
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(1.13) e(b@) - 2) = am) ,

it is natural to define

(1.14) efc)) = a@).

Then e(n) is defined for all n and we show that e(n) is monotone.

The functions a, b, ¢ satisfy various relations. In particular we have

a?(n) = b() - 2 = a() + 2n - 2
ab(n) = ba(n) + 2 = 2a(n) + b(n)
ac(n) = ca(n) + 2 = 2a(n) + c)
cb(n) = ben) + 2 = 2a(n) + 3c(n) + 2 .

Moreover if we define

(1.15) d(n) = a{n) +n
then we have
da(n) = 2d@n) - 2
db(n) = 4d(®)
de(n) = 4d@m) - 2 .

It follows from (1.11) and (1.12) that every positive integer N can be written in the form

(1.16) N = uk1 + ukz LRI ukr »

where now

1£k1<kz<"' <k1"

Hence N is a "missing' number if and only if ky =1, ky = 2.
The representation (1.16) is in general not unique. The numbers a(n) are exactly those
for which, in the representation (1.7), k; is even. Hence in (1.66) if we assume that ky is

odd, the representation (1.16) is unique. We accordinglycall this the canonical representation
of N.

Returning to (1.15), we define the complementary function d'(n) so that the sets {d(n)} ,
{d' (n)} constitute a disjoint partition of the positive integers. We shall show that

(1.17) din) = 2d'(n) .

niiy24{3}1 441 5} 6| 7] 8] 9710|11|12113 |14 15} 16
dary1{3|4{ 5} 7| 9§11 |12{13 1516 |17}19 |20 (21| 23
d]2]6}8|10]114 18 )22 )24 26 |30|32]34|38]401]42] 46
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Let O(n) denote the number of dk) = n and let §'(n) denote the number of d'(k) = n.
We show that
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Finally, if N has the canonical representation (1.16) we define

L4 k
(1.18) £(N) = E 1t .

It follows that

(1.19) a(N) = 2N + f(N)
and
Lo k.
(1.20) d(N) = a(N) + N = E 2 ',
i=1

so that there is a close connection with the binary representation of an integer.

Even though there is no 'natural' irrationality associated with the sequence {un}, it is
evident from the above summary that many of the results of the previous papers of this series
[2, 8, 4, 5, 6] have their counterpart in the present situation.

The material in the final two sections of the paper is not included in the above summary.

2. THE CANONICAL REPRESENTATION

As in the Infroduction, we define the sequence {un} by means of

uy = 0, wy = 1, u =u +2u = 1).

n+l -1

We first prove the following.

Theorem 2.1. Every positive integer N can be written uniquely in the form

(2.1) N = qu + Suy ++-- ,
where the Ei = 0 or 1 and
(2.2) € = «e0 =€ 4 =0, € = 1=> kodd

Proof. The theorem can be easily proved by induction on n as follows. Let CZn con-
sist of all sequences

(€4, €5, 2% €2p) (€ = 0 or 1)
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satisfying (2.2). Then the map
(€15 €9y =+ s €gp) —> €quy + €quy + =00 + €gpuoy

is 1 -1 and onto from C L, to [0, +~-, Uygg ™ 1]. Clearly Cy—s[0,1]. Assuming that

2
CZn——)-[O, s Ug g - 1] ,
we see that
Consg ™[00 oes g g =21 [y gy oes 205 5 - 1]

U [ugpeg * 1o mor s g * Uy - 1]

U [tgngg + Mgpyge oms 205000 + g 0 = 1]

= (0o gy - 1]
since

Ponsr T T Ugpngp

If (2.2) is satisfied we call (2.1) the canonical representation of N.

In view of the above we have also

Theorem 2.2. If N and M are given canonically by

N = Zeiui, M=Z5iui,
then
. . i i
(2.3) N = M ifandonlyif Jje,2 = §70.2°.
Let N be given by (2.1) and define
i

(2.4) o) = e 2.
Note that since
(2.5) u = 2@ - (DY)

° n 3 3
we have
(2.6) N = (600 - 1) ,
where
(2.7) () = e(-1)1ei.

Theorem 2.3. There are exactly N numbers of the form ZkK, k, K odd, less than or
equal to ¢(N).
Proof. The N numbers of the stated form are simply

0@), 92}, =+, O .
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If N is given canonically by

N = €0y + €9Uy +oeer
we define

(2.8) an) = equy + €gug + +o0
This is of course never canonical. Define
(2.9) b(n) = a(N) + 2N = gug + euy + o« .

The representation (2.9) is canonical.
Suppose €opa1 is the first nonzero € in the canonical representation of N. Then,

since
Up + Uy +oeee HlUgig = Ugea

we see that a(N) is given canonically by

+ O-u

(2.10) a) = wy +uy +eee +u ok+2 T Cokiolok+s T

2k+1

Let ¢(N) = b(N) - 1. Then, since

u +tug Foee +u2k+2 = Ugpig - 1,

c(N) is given canonically by

(2.11) c(N) = u +uy +++- +u + 0-u +oeee

2k+2 2k+3 * Cak+2%ok+a

We now state

Theorem 2.4. The three functions a, b, ¢ defined above are strictly monotone and
their ranges a(l), b(N), c(N) form a disjoint partition of N.

Proof. We have

(2.12) o(aN) + 1) = 20(N) + 2
and
(2.13) (b)) = 46(N) .

Since ¢ is 1 -1 and monotone, it follows that a, b, ¢ are monotone. By (2.10), a(N)
consists of those N whose canonical representations begin with an odd number of 1's; b(N)
of those which begin with 0; and c(N) of those which begin with an even number of 1's.
Hence all numbers are accounted for. ‘

It is now clear that the functions a, b, ¢ defined above coincide with the a, b, ¢ de-
fined in the Introduction.

The following two theorems are easy corollaries of the above.
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Theorem 2.5. c(‘lj) is the set of integers that cannot be written as a sum of distinct
u; with i= 2.
Thus the c(N) are the "missing" numbers of the Introduction.

Tkeorem 2.6. If K & c(N), then K can be written uniquely as a sum of distinct u
with i = 2,
3. RELATIONS INVOLVING a, b, AND c¢

We now define
d(N) = a(N) + N.

Since
u_ +u = Zk
k k+1 :
it follows at once from (2.4) and (2.8) that
(3.1) dN) = ¢(N).
Hence, by (2.6), we may write
(3.2) 2N = a(N) - f(N) .

Let d' denote the monotone function whose range is the complement of the range of d.
Since the range of ¢ (that is, of d) consists of the numbers sz, with k,K both odd, it
follows that the range of d' consists of the numbers ZKK with k even and K odd. We have

therefore

(3.3) dW) = 2d'(N) .
Thus (2.12) and (2.13) become

(3.4) dia +1) = 2d + 2

and

(3.5) db = 4d ,

respectively.

From (2.10) we obtain

(3.6) da = 2d - 2
and
3.7 dla =d-1.

Theorem 3.1. We have

(3.8) a%() = b(N) - 2 = a(N) + 2N - 2
©.9) ab() = ba(N) + 2 = 2a(N) + b(N)
(3.10) ac(N) = ca(N) + 2 = 2a(N) + c(V)
(3.11) ch(N) = be(N) + 2 = 2a(N) + 3c(N)
(3.12) da() = 2d(N) - 2

(3.13) db(N) = 4d(N)

(3.14) de(N)

4d(N) - 2.
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Proof. The first four formulas follow from the definitions. For example if

No=Uppin * Copap Yo ¥ 000 s
then
AN) = Teug o+ 1oy +oeee F LUg g+ Copn Uoag T
and
2N) = Letls 4 oo 4 1
') = Lewp e+ LU n F Coprn Unkaa
= Yotz T 2t Copag Ugpag t ot
= b(N) - 2.

Formula (3.12) is the same as (3.6) while (3.13) and (3.14) follow from the formulas for ab
and ac.
In view of Theorem 2.6, every
N c a) U b(N)
can be written uniquely in the form
(3.15) N = Oy + Oqug + +--

with 0, = 0, 1. We define A, asthe set of N for which 0 is the first nonzero 5.
Theorem 3.2. We have

(3.16) A abka(y) U abc() k = 0)

]

2k+2

1l

(3.17) A ba@) U b & = 1.

2k+1
Proof. By (2.9), (2.10) and (2.11), the union
a(N) U c@)

consists of those K for which

Hence, applying a, we have

A, = 2()) U ac()
and, applying b,
Az = ba(N) U be(d) .

Continuing in this way, it is clear that we obtain the stated results.
Theorem 3.2 admits of the following refinement.
Theorem 3.3. We have

(3.17) aba() = {N € A, ,|N = ab“a) = n (mod 2)}
(3.18) abkc(u) ={N € A2k+z' N = abkc(n) =n+1 (mod2)}
(3.19) bka(‘lg) ={N € A2k+1] N = b%a@ = n (mod 2)}
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(3.20) b = (N € By |N = bFe() = n +1 (mod2)} .
Proof. The theorem follows from Theorem 3.2 together with the observation

(3.21) a(n) = b)) = n, cln) = n+1 (mod?2).
Let
N € a@® U b@) ,
so that (3.15) is satisfied. We define
(3.21) e(N) = Oy + Oquy + +oe

Then from the definition of a and b we see that

(3.22) e(a(n)) = n
and

(3.23) e(b@) = a@ .
Since

a?n) = b)) - 2 < c) < b,
we define
(3.24) e(c(n)) = a() .

Thus e(n) is now defined for all n.

3] 4] 5| 6 7| 8§ 91101111213 |14 |15]{16 |17 |18 ]19 |20

1| 1| 2] 3| 4| 4y 4; 51 51 5|1 6| 6 6 7| 81 9] 9} 9]10

21 (22123124 |25(26|27128129130(31(32]33|34(35|36]|37|38]39]40

olbijoiB

1111211211213 ]14(15)15{15 16|16 16 |17 |17 |17 )18 J19]20 | 20| 20

Theorem 3.4. The function e is monotone. Indeed e(n) = e(n - 1) if and only if

n € b(N) U c(N).
Otherwise (n € a(N))
en) = en -1) +1.

Proof. We have already seen that
ebn) =eclh) =ech -1 = am).

Thus it remains to show that
(3.25) e(a) = e(am - 1) + 1.
Let

n =

Uoks1 + €oprn Yokt T
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be the canonical representation of n. Then

aln) = Uy o Coppp Ugiyg 00
Since
u2k+2 -1 = u2 +u3 +u4 + s +u2k+1 N
we get
am) -1 = uy +ug + +-- Uy F o Upag

It follows that

e(a) - 1) =y +uy + -+ +u

2k T Cok4a Voksn t°

= (u -1) + € + oo

2k+1 2k+2 "2k+2
=n-1.
This evidently proves (3.25).

Theorem 3.5. We have

aln + 1) = a() + 3 n € a@))
(3.26) am +1) = a@ +1 in € b U c®) .
Proof. Formula (3.4) is evidently equivalent to '
(3.27) a(a) + 1) = b(n) + 1.
By (3.8)

a?(n) = bm) - 2 = cn) -1,

so that we have the sequence of consecutive integers

(3.28) a2(n), c(n), b(n), aa@m +1 .

On the other hand, by (3.9) and (3.10)

ab(n) = ac) +1.
Finally, since

bn) +1 € a@),
we have, by (3.28),

a(bn) + 1) = a?(a(m) +1) = ba@ +1 -2
a(a(n) + 1) + 2a(n)
2a(n) + b(n) + 1

ab(n) + 1 .

This completes the proof of the theorem.
If we let a(n) denote the number of a(k) <n, it follows at once from Theorem 3.5
that

(3.29) a(n) = n + 2a(n) h=1).

This is equivalent to
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(3.30) d'(n) = n + o).

We shall now show that

(3.31) an +1) = e(n) .

Let n = a(N) U b(N). Then

R e & =2
and
e(n) = W, + €pag W T 000
Also
n+1 = w +ug + €qqlpyy oo (canonical) ,
so that

aln + 1) = Up + Ugyy F €py] Ugyp F 00

It follows that

(3.32)

aln +1) - 2e(n) = n +1 (n & c) .
If ne c(N) we have eln) = e(n +1). Since n+1 & b(N), we may use (3.32). Thus

2en) = 2e(n +1) =am +2) - @+ 32) =a@+1) - n+1),

by (3.26). Hence

a(n +1) - 2e(n) = n +1

for all n. This is evidently equivalent to (3.31).

(3.33)

(3.34)
(3.35)
(3.36)

(3.37)

(4.1)

This proves

Theorem 3.6. The number of a(k) = n is equal to e(n). Moreover

an) = n + 2e(n - 1) (n > 1).

A few special values of a(n) may be noted:

a2l) o o2k ® =1
a(22k) - 22k+1 _ 2 & = 1)
2@t _g) = 2% g & > 1)
a@® _2) = 22K _ g & > 2).

4, COMPARISON WITH THE BINARY REPRESENTATION

If N is given in its binary representation

N =%g+y1°2 +yg-28 400,

where % = 0 or 1, we define
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4.2) ON) = qup + Y4ug + YoUp + -+
and

(4.3) M = Xy 0.
Then we have !

(4.4) 6(d) = N

and

(4.5) x{dm) = £()

A simple computation leads to

(4.6) 5N = [EZI] } [%] + [Ng] e

Let
4.7 5'(N) = N - [1‘72-] + [%] -
so that
(4.8) Sy + O'(N) = N.

Theorem 4.1. The number of d(k) = n is equal to O(N). The number of d'(k) = n is
equal to Ot(N).

Proof. Since 0 is monotone, we have d(k) = n if and only if
k =0dk) = 0m.

Hence, in view of (4.8), the theorem is proved.

‘We have seen in Section 3 that if N has the canonical representation

N = Gy + €y + *e e
then
4.9) a(N) - 2N = {(N),

where
N = 2 D' .
i
It follows that

(4.10) dN) = a(N) + N = Y. e 2 .

Replacing N by d(N), d"(N) in (4.9), we get

(4.11) a(d) - 2dN) = £(a@)
and
(4.12) a(d () - 2d'(N) = £(d@)) .
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Theorem 4.2. The function f(d) takes on every even value (positive, negative or zero)

infinitely often. The function f(d') takes on every odd value (positive or negative) infinitely

often.

Proof. Consider the number

N=u1+u3+u5+...+u2k_1
= l(21 + 1) +l(23 + 1) 4 eee +l(22k_1 + 1)
3 3 3

12 2%k

_g(.g(z _1)+1<).
Clearly
(4.13) N = 2 (mod 4)
if and only if
(4.14) k = 0 (mod4).

It follows from (4.13) that N &€ d(N). Also it is evident that

(4.15) fN) = -k,

=
]

= 0 (mod4).

In the next place the number

N

]

ug +ll5 4+ oo +u2k+1

g

%(23+1)+%(25+1)+ 1)

3k (mod 8) .

Hence for k = 2 (mod 4), we have N = 2 (mod 4) and so as above N & d(N).

evident that (4.15) holds in this case also.
Now consider
N

]

u1+u2+u4+u6+--- +u2k

1 o2 1 (ot vee + 1
1+—3-(2 —1)+§(2 - 1) + +3(2

2k

- 1)

m

1 +k (mod4).
Thus for k odd, N &€ d(N). Also it is clear that
fN) =k -1.

This evidently proves the first half of the theorem.
To form the second half of the theorem we first take

N =uy +tug+us+--c+uUgpq-.
Then

Also it is
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N =k (mod?2).
Thus for k odd, N € d'(N). Moreover
(4.16) fN) = k.
Next for
N = uw +up +ug+ug+eee +ugg + Ugksp
we again have
N = k (mod?2),

so that N Ed'(’lg) for k odd. Clearly
(4.17) f(N) = k.

This completes the proof of the theorem.
As an immediate corollary of Theorem 4.2 we have

Theorem 4.3. The commutator
ad(N) - da(N) = fd(N) + 2

takes on every even value infinitely often. Also the commutator
ad'(N) - dra(N) = fd'(N) +1
takes on every even value infinitely often.

5. WORDS

By a word function, or briefly, word, is meant a function of the form
(5.1) w = a% b’B e’ aa' bﬁ' 07' ooy,

where the exponents are arbitrary non-negative integers.

Theorem 5.1. Every word function w(n) can be linearized, that is

(5.2) wh) = Awa(n) + Bwn - Cw (AW >0 ,

where Aw’ Bw’ CW are independent of n. Moreover the representation (5.2) is unique,
Proof. The representation (5.2) follows from the relations

a’(n) = a(n) + 2n - 2
(5.3) ab(n) = 2a(n) + b(n) = 3a(n) + 2n
ac(n) = 2a(n) + c(n) =

3a(n) + 2n -1 .

If we assume a second representation (5.2) it follows that a(n) is a linear function of
n. This evidently contradicts Theorem 3.5.
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Theorem 5.2. For any word w, the coefficient BW in (5.2)is even. Hence the func-
tion d is not a word.
Proof. Repeated application of (5.3).

Remark. If we had defined words as the set of functions of the form
(5.4) 2% b[3 ¢’ d8 see
then, in view of Theorem 4.3, we would not be able to assert the extended form of Theorem

5.1.

Combining (5.3) with (5.2), we get the following recurrences for the coefficients Aw’

B ,C_:
w’ Tw
wa Aw + Bw
(5-5) wa = 2A
=2A +C
wa w
= 3A_+ B
wb w w
(5.6) Bwb = ZAW + 2B
Cwb = Cw
= 3A + B
we w w
(5.7) ch = ZAW + ZBW

we w
In particular we find that

(5.8) &) = wa + 20 _n - @, -1,

(5.9) ab () = uy 2@ + (. - Do,

(5.10) ac() = uy a0 + @y, - Do - $du, - W),
(5.11) B0 = uya@ + @y + Dn,

(5.12) ) = e pal) + 2 g0 - Gy - D),
(5.13) b0 = uy a0 + 20 - G - )
(5.14) abim) - pam) = 1

Yergj+l T Yka1 T Yo T
= 265 - 0¥ - ).

We shall now evaluate AW and B, explicitly, For w as given by (5.1) we define the
weight of w by means of
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(5.15) p=p(w)=oz+2B+2'y+a'+2[3'+2'y'+--o.
We shall show that
(5.16) AW = up, BW = 2up_1 .

The proof is by induction on p. For p =1, (5.16) obviously holds. Assume that
(5.16) holds up to and including the value p. By the inductive hypothesis, (5.5), (5.6), (5.7)

become

A = A +B = u_ + 2u =
(5.17) wa P P P p-1 p+l
° = 2A = 2u
wa P P
A = A = 3A_ + B = 3u_ + 2u = u
(5.18) wb wC P P P p-1 pt2
: B = B = 2A_ + 2B_ = 2u_ + 2u = u .
wp we P P P p-1 p+l

This evidently completes the induction.

As for Cw’ we have

= 2u_+ C
wa P w
(5.19) Cwb = CW
we up+1 * Cw ‘

Unlike AW and Bw’ the coefficient CW is not a function of the weight alone. For
example
C g = 2, C = 0,
C

c
Cp = 4 ap =0 Cpo=1.

Repeated application of (5.19) gives

C k= 2(u1 +ug oo +U_k_1) = Uk - 1
a

C = 0

bk

Cck = oo Fug = %(uk+2 -1,

of which the first two agree with (5.8) and (5.11).
We may state

Theorem 5.3. If w is a word of weight p, then
(5.20) win) - upa(n) + 2up_1n - CW ,

where CW can be evaluated by means of (5.19). If w, w' are any words of equal weight, then

(5.21) w(n) - w'(n) = Cw' - CW .
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Theorem 5.4. For any word w, the representation
w o= aozb6 cyaa' bﬁt AN

is unique.
Proof. The theorem is a consequence of the following observation. If u, v are any

words, then it follows from any one of

ua = va, ub = vb, uc = ve

that u = v.

Theorem 5.5. The words u,v satisfy uv = vu if and only if there is a word w such
that

r 5
u = w, vV =W o,

where r,s are non-negative integers.

Theorem 5.6. In the notation of Theorem 5.3, ‘CW = C{N if and only if w = w',

Remark. It follows from (5.20) that no multiple of d'(n) is a word function,

6. GENERATING FUNCTIONS

Put
o) ®© oo
6.1) Ak) = Z 20 gy - Z PO oy = 2: <@
n=1 n=1 n=1
and
Q0 [~.]
(6.2) DE) = Z S :): 1@
n=% n=

where of course |x| < 1. Then clearly

(6.3) AR + BE +CE = 17—

and

(6.4) D) + Di(x) = 1 X =
Since

bn) = cm) + 1, d@n) = 2d'(m) ,
(6.3) and (6.4) reduce to

(6.5) AR + 1+ R0 = 2
and
(6.6) Dix) + Dyx?) = o

respectively.
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It follows from (6.6) that

Dl(x)= - + - oo
1-x2 1-xt

It I
M
k": :::
=
M M's
T ™
[ury [\V]
= -

n=1 2kr=n
so that
dr(n) = E 0¥ .
2kr=n

This is equivalent to the result previously obtained that
N = {ZmM ' m even, M odd}.

Theorem 6.1. Each of the functions A(x), B(x), C(x), D(x), D;(x) has the unit circle
as a natural boundary.

Proof, It will evidently suffice to prove the theorem for A(x) and D;(x). We consider
first the function Dj(x).

To begin with, D;(x) has a singularity at x = 1. Hence, by (6.6), D;(x) has a singu-
larity at x = -1. Replacing x by x2, (6.6) becomes

x2

Dl(XZ) + Dl(X4) = B
1 - x?

We infer that D;(x) has singularities at x = i. Continuing in this way we show that D;(x)
has singularities at

=62k11'1/2n (k=1, 3, 5, ...’zn_l; n=1, 2, 3,-.-).

This proves that D;(x) cannot be continued analytically across the unit circle.

In the next place if the function
00

fx) = Z cnxn ,

n=1

where the e, = 0 or 1, can be continued across the unit circle, then [1, p. 315]
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f(x)=_li(x)_k,
1 -x

where P(x) is a polynomial and k is some positive integer. Hence
(6.7) c =c m > ng).

Now assume that A(x) can be continued across the unit circle. Then by (6.7), there exists
an integer k such that

aln) = a(y) +k @ >ng),

where n; depends on n. It follows that

(6.8) a(n) = a(n - r) + k n > ng)
for some fixed r. This implies
(6.9) dn) = an - 1) +k +r n >u).

However (6.9) contradicts the fact that D(x) = Dy(x2) cannot be continued across the unit
circle.

Theorem 6.2, Let w(n) be an arbitrary word function of positive weight and put

00

(6.10) F () = z L

n=1

Then Fw(x) cannot be continued across the unit circle.
Proof. Assume that Fw(x) does admit of analytic continuation across the unit circle.

Then there exist integers r,k such that
wm) = w - 1) + s @ >ny) .

By (5.2) this becomes

Awa(n) +B T = Aw(n -r) +k.
This implies
(6.11) Awd(n) = Awd(n - 1) + (AW - Bw)r +k.

Since AW > 0, (6.11) contradicts the fact that D(x) canunot be continued.
Put
[3]

(6.12) E® = Z <0

n=1
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Then, by Theorem 3.4,

(6.13) Bl) = 70— + 2A() .
Also
o0
(6.14) 1 - x)—lA(x) = Z e x° .
n=1

In the next place, by (3.8), (3.9), and (3.10),

0 0
A®) = :El ‘Xaz(n) + L-JSO;‘ Xalo(n) + §1 : Xac(n)

X_ZB(X) + (1 + x_l)Fab(x) .

i

Since
-1 _ X
AR) + 1 +x T)Bx) = T—x °
it follows that
(6.15) @+ 2%, 0 = @ +x+x2)AR - o .

Let w, w' be two words of equal weight. Then by (5.21),
C C
(6.16) X WFW(X) = x W'FW,(X) .

Thus it suffices to consider the functions
Fk(x) k =1,2, 3, «=*).
a

We have
F k(x) = F k—l(x) + F kb(X) + F K ®) .
By (5.8) a a a ac
k -
a b)) = ukab(n) + 2uk_1b(n) - (uk - 1)
= uk(3a(n) + 2n) + Zuk_l(a(n) + 2n) - (uk_'_1 -
= (3uk + 2uk_1)a(n) + z(uk + Zuk—l n - (uk 4
= +2a(n) + Zuk ah - (uk 41 " 1)
. a1<:+2 () + 2k+1
akc(n) = w ack) + 2u, .cn) - (u - 1)
k k-1 k+1

= uk(3a(n) +2n - 1) + 2uk_1(a(n) +2n - 1) -

a(n) + 2u, ,..n - (2u -1

Yet2
k42 ‘
= a (o) + W0

k-+1 k+1

[Continued on page 550. ]
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