CONCAVITY PROPERTIES OF CERTAIN SEQUENCES OF NUMBERS

L. CARLITZ
Duke University, Durham, North Carolina

A set of non-negative real numbers $C_{k}(k=1,2, \cdots, N)$ is said to be unimodal if there exists an integer n such that

$$
\begin{array}{ll}
C_{k} \leq C_{k+1} & (1 \leq k<n) \\
C_{k} \geq C_{k+1} & (n \leq k<N)
\end{array}
$$

A stronger property is logarithmic concavity:
(1)

$$
C_{k}^{2} \geq C_{k+1} C_{k-1} \quad(1<k<N)
$$

Strong logarithmic concavity (SLC) means that the inequality in (1) is strict for all k. In a recent paper, Lieb [1] has proved that the Stirling numbers of the second kind

$$
S(N, k)=\frac{1}{k!} \sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j} j^{N}
$$

have the SLC property. The proof makes use of Newton's inequality. If the polynomial

$$
\begin{equation*}
Q(x)=\sum_{k=1}^{N} C_{k} x^{k} \tag{2}
\end{equation*}
$$

has only real roots, then

$$
\mathrm{C}_{\mathrm{k}}^{2} \geq \frac{\mathrm{k}(\mathrm{~N}-\mathrm{k}+1)}{(\mathrm{k}-1)(\mathrm{N}-\mathrm{k})} \mathrm{C}_{\mathrm{k}+1} \mathrm{C}_{\mathrm{k}-1} \quad(1<\mathrm{k}<\mathrm{N})
$$

In view of the above, it is of some interest to exhibit sequences $\left\{\mathrm{C}_{\mathrm{k}}\right\}$ with the SLC property for which the corresponding polynomial does not have the SLC property. Such an example is furnished by

[^0]$$
\left(1+x+x^{2}\right)^{n}=\sum_{k=0}^{2 n} c(n, k) x^{k}
$$

It follows at once from (3) that $c(n, k)$ satisfies the recurrence
(4)

$$
\mathrm{c}(\mathrm{n}+1, \mathrm{k})=\mathrm{c}(\mathrm{n}, \mathrm{k}-2)+\mathrm{c}(\mathrm{n}, \mathrm{k}-1)+\mathrm{c}(\mathrm{n}, \mathrm{k}) .
$$

We shall show first that, for $\mathrm{n} \geq 2$,
(5)

$$
\begin{array}{ll}
c(n, k)<c(n, k+1) & (0 \leq k<n) \\
c(n, k)>c(n, k+1) & (n \leq k<2 n) .
\end{array}
$$

Since
(7)

$$
c(n, k)=c(n, 2 n-k),
$$

(5) and (6) are equivalent so that it suffices to prove (5). Since

$$
\left(1+x+x^{2}\right)^{2}=1+2 x+3 x^{2}+2 x^{3}+x^{2}
$$

it is clear that (5) holds for $\mathrm{n}=2$. Assume that (5) holds for $2 \leq \mathrm{n} \leq m$. Then, for $\mathrm{k}<\mathrm{m}$,

$$
c(m+1, k+1)-c(m+1, k)=c(m, k+1)-c(m, k-2)>0 .
$$

For $\mathrm{k}=\mathrm{m}$ we have

$$
\begin{aligned}
c(m+1 & , m+1)-c(m+1, m) \\
& =2 c(m, m-1)+c(m, m)-[c(m, m-2)+c(m, m-1)+c(m, m)] \\
& =c(m, m-1)-c(m, m-2)>0
\end{aligned}
$$

This completes the proof of (5).
We remark that $c(n, n)$ satisfies

$$
\sum_{n=0}^{\infty} c(n, n) x^{n}=\left(1-2 x-3 x^{2}\right)^{-\frac{1}{2}}
$$

For proof see [2, p. 126, No. 217].
We shall now show that, for $\mathrm{n} \geq 2$,

$$
\begin{equation*}
\mathrm{c}^{2}(\mathrm{n}, \mathrm{k})>\mathrm{c}(\mathrm{n}, \mathrm{k}+1) \mathrm{c}(\mathrm{n}, \mathrm{k}-1) \quad(0<\mathrm{k}<2 \mathrm{n}) \tag{8}
\end{equation*}
$$

This holds for $n=2$. We assume that (8) holds for $2 \leq n \leq m$.
Note that (8) implies
(9)

$$
\mathrm{c}(\mathrm{n}, \mathrm{j}) \mathrm{c}(\mathrm{n}, \mathrm{k})>\mathrm{c}(\mathrm{n}, \mathrm{j}-1) \mathrm{c}(\mathrm{n}, \mathrm{k}+1) \quad(0<\mathrm{j} \leq \mathrm{k}<2 \mathrm{n})
$$

Indeed, by (8)

$$
\frac{c(n, k)}{c(n, k+1)}>\frac{c(n, k-1)}{c(n, k)}
$$

which implies

$$
\frac{c(n, k)}{c(n, k-1)} \quad \frac{c(n, j-1)}{c(n, j)}
$$

Thus, for $0<k<2 m$,
$\begin{aligned} &\left|\begin{array}{ll}c(m+1, k) & c(m+1, k+1) \\ c(m+1, k-1) & c(m+1, k)\end{array}\right| \\ &=\left|\begin{array}{lll}c(m, k-2)+c(m, k-1)+c(m, k) & c(m, k-1)+c(m, k)+c(m, k+1) \\ c(m, k-3)+c(m, k-2)+c(m, k-1) & c(m, k-2)+c(m, k-1)+c(m, k)\end{array}\right| \\ &=\left|\begin{array}{lll}c(m, k-2) & c(m, k-1) \\ c(m, k-3) & c(m, k-2)\end{array}\right|+\left|\begin{array}{ll}c(m, k-2) & c(m, k) \\ c(m, k-3) & c(m, k-1)\end{array}\right| \\ &+\left|\begin{array}{ll}c(m, k-2) & c(m, k+1) \\ c(m, k-3) & c(m, k)\end{array}\right|+\left|\begin{array}{ll}c(m, k-1) & c(m, k) \\ c(m, k-2) & c(m, k-1)\end{array}\right| \\ &+\left|\begin{array}{ll}c(m, k-1) & c(m, k+1) \\ c(m, k-2) & c(m, k)\end{array}\right|+\left|\begin{array}{ll}c(m, k) & c(m, k-1) \\ c(m, k-1) & c(m, k-2)\end{array}\right| \\ &+\left|\begin{array}{ll}c(m, k) & c(m, k+1) \\ c(m, k-1) & c(m, k)\end{array}\right| .\end{aligned}$

The fourth and sixth determinants cancel while each of the remaining five is positive by (9). Hence

$$
\mathrm{c}^{2}(\mathrm{~m}+1, \mathrm{k})>\mathrm{c}(\mathrm{~m}+1, \mathrm{k}-1) \mathrm{c}(\mathrm{~m}+1, \mathrm{k}) \quad(0<\mathrm{k}<2 \mathrm{~m})
$$

As for the excluded values, we have by (7)
$c^{2}(m+1,2 m)-c(m+1,2 m-1) c(m+1,2 m-1)=c^{2}(m+1,2)-c(m+1,3) c(m+1,1)>0$, $c^{2}(m+1,2 m+1)-c(m+1,2 m) c(m+1,2 m+2)=c^{2}(m+1,1)-c(m+1,2) c(m+1,0)>0$.

In a similar way we can show that the coefficients of $c_{r}(\mathrm{n}, \mathrm{k})$ defined by

$$
\left(1+x+\cdots+x^{r}\right)^{n}=\sum_{k=0}^{n r} c_{r}(n, k) x^{k}
$$

have the SLC property for $n \geq 2$.
[Continued on page 530.]

[^0]: * Supported in part by NSF Grant GP-7855.

