A CONJECTURE CONCERNING LUCAS NUMBERS

L. CARLITZ Duke University, Durham, North Carolina

Anaya and Crump (now Anaya and Anaya) [1] have proved that

$$\left[a^k F_n + \frac{1}{2} \right] = F_{n+k}$$
 (n \geq k \geq 1),

where $a = \frac{1}{2}(1 + \sqrt{5})$ and [x] denotes the greatest integer $\leq x$. They remark that it seems reasonable that

$$[a^{k} L_{n} + \frac{1}{2}] = L_{n+k},$$

when n is somewhat greater than k.

We shall show that

(1)
$$[a^{k}L_{n} + \frac{1}{2}] = L_{n+k}$$
 $(n \ge k + 2, k \ge 2)$.

Moreover, for k = 1, (2)

$$[aL_n + \frac{1}{2}] = L_{n+1}$$
 (n \geq 4).

To prove (1), it suffices to show that

(3)	$\left a^{k}L_{n} - L_{n+k}\right < \frac{1}{2}$	(n ≥	k + 2,	$k \geq$	2),
that is,					
(4)	$ b^{n}(a^{k} - b^{k}) < \frac{1}{2}$	(n ≥	k + 2,	$k \ge$	2),

where we have used

$$L_n = a^n + b^n$$
, $b = \frac{1}{2}(1 - \sqrt{5})$.

Clearly (4) is satisfied if

$$a^{-n}(a^{k} + a^{-k}) < \frac{1}{2}$$
 (n $\geq k + 2, k \geq 2$).

Thus it is enough to show that

$$a^{-k-2}(a^k + a^{-k}) < \frac{1}{2}$$
 (k \geq 2),

that is,

(5)
$$a^{-2} + a^{-2k-2} < \frac{1}{2}$$
 $(k \ge 2)$.

Since

$$a^{-2} + a^{-6} = \frac{3 - \sqrt{5}}{2} - 9 - 4\sqrt{5} = \frac{1}{2}(21 - 9\sqrt{5}) < \frac{1}{2}$$
,

[Continued on page 550.]