ADDENDUM TO THE PAPER "FIBONACCI REPRESENTATIONS"

L. CARLITZ ${ }^{\star}$ and RICHARD SCOVILLE
Duke University, Durham, North Carolina and
VERNER E. HOGGATT, JR.
San Jose State University, San Jose, California

1. The presentation and investigation of the functions a and b given in the paper cited in the title [1] can be simplified if we consider the following: Every positive integer N has a unique representation in the form

$$
\begin{equation*}
\mathrm{N}=\delta_{2} \mathrm{~F}_{2}+\delta_{3} \mathrm{~F}_{3}+\cdots \tag{1}
\end{equation*}
$$

where δ_{i} is either 0 or 1 and $\delta_{i} \delta_{i+1}=0$. This canonical or Zeckendorf representation may be written more briefly

$$
\begin{equation*}
N=\cdot \delta_{2} \delta_{3} \delta_{4} \delta_{5} \cdots \tag{2}
\end{equation*}
$$

Let A be the sequence of length 1 consisting of a $0, A=(0)$, and let B be the sequence of length $2, B=(1,0)$. Clearly, then, N can be written uniquely as a sequence of $A^{\prime} s$ and $B^{\prime} S$, and any sequence of $A^{\prime} s$ and $B^{\prime} s$, infinite on the right, containing only a finite number of $\mathrm{B}^{\prime} \mathrm{s}$, represents a non-negative integer. We may regard A and B as functions. For instance $A(N)$ is to be the sequence obtained by adjoining A to the left of the sequence representing N, and similarly for $B(N)$.

Then we see immediately that

$$
\begin{equation*}
\mathrm{N}+\mathrm{A}(\mathrm{~N})+1=\mathrm{B}(\mathrm{~N}), \quad(\mathrm{N} \geq 0) \tag{3}
\end{equation*}
$$

Now define
(4)

$$
\begin{cases}a(N)=A(N-1)+1 & (N \geq 1) \\ b(N)=B(N-1)+1 & (N \geq 1)\end{cases}
$$

Then (3) becomes

[^0]$$
N+a(N)=b(N), \quad N \geq 1
$$

Hence properties (2.2), (2.3) and (2.4) of [1] are easily verified, so we have, in fact,
(6)

$$
\left\{\begin{array}{l}
\mathrm{a}(\mathrm{~N})=[\alpha \mathrm{N}] \\
\mathrm{b}(\mathrm{~N})=\left[\alpha^{2} \mathrm{~N}\right], \quad \alpha=(1+\sqrt{5}) / 2
\end{array}\right.
$$

as before, (1.6) of [1]).
The advantage of introducing A and B appears when we calculate $e(a)$ and $e(b)$. We have

$$
\left\{\begin{array}{l}
\mathrm{e}(\mathrm{a}(\mathrm{~N}))=\mathrm{e}(\mathrm{~A}(\mathrm{~N}-1)+1)=\mathrm{e}(\mathrm{~A}(\mathrm{~N}-1))+1=\mathrm{N} \tag{7}\\
\mathrm{e}(\mathrm{~b}(\mathrm{~N}))=\mathrm{e}(\mathrm{~B}(\mathrm{~N}-1)+1)=1+\mathrm{A}(\mathrm{~N}-1)=\mathrm{a}(\mathrm{~N})
\end{array}\right.
$$

The function e is defined by (1.7) in [1]:

$$
\begin{equation*}
\mathrm{e}\left(\delta_{2} \mathrm{~F}_{2}+\delta_{3} \mathrm{~F}_{3}+\cdots\right)=\delta_{2} \mathrm{~F}_{1}+\delta_{3} \mathrm{~F}_{2}+\cdots \tag{8}
\end{equation*}
$$

To obtain (7) we have used the fact that $e(N)$ is independent of the Fibonacci representation chosen for N .

It is also useful to define $\mathrm{E}(\mathrm{N})$ by means of
(9)

$$
\mathrm{e}(\mathrm{~N})=\mathrm{E}(\mathrm{~N}-1)+1 ;
$$

this definition may be compared with (4). Let N have the canonical representation (1) and consider

$$
\begin{equation*}
N+1=1+\cdot \delta_{2} \delta_{3} \delta_{4} \cdots \tag{10}
\end{equation*}
$$

If $\delta_{2}=0$ we may write

$$
\mathrm{N}+1=\cdot 1 \delta_{3} \delta_{4} \cdots
$$

This representation may not be canonical. However, by (8) we have

$$
\mathrm{e}\left(\mathrm{~N}+1=1+\cdot \delta_{3} \delta_{4} \delta_{5} \cdots\right.
$$

Hence, by (8) and (9),

$$
\begin{equation*}
\mathrm{E}(\mathrm{~N})=\cdot \delta_{3} \delta_{4} \delta_{5} \cdots \tag{11}
\end{equation*}
$$

If $\delta_{2}=1$, then $\delta_{3}=0$ and we get

$$
\mathrm{N}+1=\cdot 01 \delta_{4} \delta_{5} \cdots
$$

Again this representation may not be canonical but, by (8),

$$
\mathrm{e}(\mathrm{~N}+1)=\cdot 1 \delta_{4} \delta_{5} \cdots=1+\cdot \delta_{3} \delta_{4} \delta_{5} \cdots
$$

It follows that

$$
\mathrm{E}(\mathrm{~N})=\cdot \delta_{3} \delta_{4} \delta_{5} \cdots
$$

Thus in any case if N has the canonical representation (1), $\mathrm{E}(\mathrm{N})$ is determined by (11).

To sum up we state the following.
Theorem. Let N have the canonical representation

$$
\mathrm{N}=\cdot \delta_{2} \delta_{3} \delta_{4} \cdots
$$

Then

$$
\begin{aligned}
& \mathrm{A}(\mathrm{~N})=\cdot 0 \delta_{2} \delta_{3} \delta_{4} \cdots \\
& \mathrm{~B}(\mathrm{~N})=\cdot 10 \delta_{2} \delta_{3} \delta_{4} \ldots \\
& \mathrm{E}(\mathrm{~N})=\cdot \delta_{3} \delta_{4} \delta_{5} \cdots
\end{aligned}
$$

2. Similar observations may be made for Fibonacci representations of higher order. For instance, if we put

$$
\begin{equation*}
A=(0), \quad B=(10), \quad C=(110) \tag{12}
\end{equation*}
$$

then the relations between A, B, C and a, b, c of [2] are given by

$$
\left\{\begin{array}{l}
\mathrm{a}(\mathrm{~N})=\mathrm{A}(\mathrm{~N}-1)+1 \tag{13}\\
\mathrm{~b}(\mathrm{~N})=\mathrm{B}(\mathrm{~N}-1)+1 \\
\mathrm{c}(\mathrm{~N})=\mathrm{C}(\mathrm{~N}-1)+1
\end{array}\right.
$$

where $\mathrm{N} \geq 1$.
3. By Theorem 11 of [1]
(14)

$$
\left\{\begin{array}{l}
N \in(a) \rightleftarrows 0<\left\{\frac{N}{\alpha^{2}}\right\}<\frac{1}{2}, \\
N \in(b) \rightleftarrows \frac{1}{\alpha}<\left\{\frac{N}{\alpha^{2}}\right\}<1
\end{array}\right.
$$

where $\{\mathrm{x}\}$ denotes the fractional part of x . The possibility $\left\{\mathrm{N} / \alpha^{2}\right\}=1 / \alpha$ never occurs.
We should like to point out that (14) can be replaced by the following slightly simpler criterion.
(15)

$$
\left\{\begin{array}{l}
\mathrm{N} \in(\mathrm{a}) \rightleftarrows\{\alpha \mathrm{N}\}>\frac{1}{\alpha^{2}} \\
\mathrm{~N} \in(\mathrm{~b}) \rightleftarrows\{\alpha \mathrm{N}\}<\frac{1}{\alpha^{2}}
\end{array}\right.
$$

As above, $\{\alpha N\}=1 / \alpha^{2}$ is impossible.
To see that (14) and (15) are equivalent, it suffices to observe that

$$
\left\{\frac{\mathrm{N}}{\alpha^{2}}\right\}=\{(2-\alpha) \mathrm{N}\}=1-\{\alpha \mathrm{N}\}
$$

REFERENCES

1. L. Carlitz, Richard Scoville and V. E. Hoggatt, Jr., "Fibonacci Representations," Fibonacci Quarterly, Vol. 10, No. 1.(1972), pp. 1-28.
2. L. Carlitz, Richard Scoville and V. E. Hoggatt, Jr., "Fibonacci Representations of Higher Order," Fibonacci Quarterly, Vol. 10, No. 1 (1972), pp. 43-69.
[Continued from page 522.]
3. Stephen P. Geller, "A Computer Investigation of a Property of the Fibonacci Sequence," Fibonacci Quarterly, April 1963, p. 84.
4. Dov Jarden, "On the Periodicity of the Last Digits of the Fibonacci Numbers," Fibonacci Quarterly, Dec. 1963, pp. 21-22.
[Continued from page 525.]

REFERENCES

1. E. H. Lieb, "Concavity Properties and a Generating Function for Stirling Numbers," J. of Combinatorial Theory, Vol. 5 (1968), pp. 203-206.
2. G. Pólya and G. Szegb, Aufgaben und Lehrsả̉tze aus der Analysis I, Berlin, 1925.

[^0]: * Supported in part by NSF Grant GP-17031.

