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1. The presentation and investigation of the functions a and b given in the paper 
cited in the title [ l ] can be simplified if we consider the following: Every positive integer 
N has a unique representation in the form 

(1) N = <52 F2 + 63 F 3 + . . . , 

where 6. is either 0 or 1 and 6. 6. = 0, This canonical or Zeckendorf representation 
may be written more briefly 

(2) N = • 626z5A5b*«* . 

Let A be the sequence of length 1 consisting of a 0, A = (0), and let B be the s e -
quence of length 2, B = (1»0). Clearly, then? N can be written uniquely as a sequence of 
ATs and BTsf and any sequence of A?s and Bfs9 infinite on the right, containing only a 
finite number of BTs, represents a non-negative integer. We may regard A and B as 
functions. For instance A(N) is to be the sequence obtained by adjoining A to the left of 
the sequence representing Ns and similarly for B(N). 

Then we see immediately that 

(3) N + A(N) + 1 = B(N), (N > 0) . 

Now define 

(4) 

Then (3) becomes 

a(N) 

b(N) 

= A(N -

= B(N -

1) + 1 

1) + 1 

(N > 1) 

(N £ 1) 
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(5) N + a(N) = b(N) N ^ 1 . 

Hence propert ies (2.2), (2.3) and (2.4) of [ l] are easily verified, so we have, in fact, 

(a(N) = [aN] 
( 6 ) (b(N) = |>2N] , a = (1 + >JE)/2 

as before, ((1.6) of [ 1 ] ) . 
The advantage of introducing A and B appears when we calculate e(a) and e(b). 

We have 

( e (a (N) ) = e(A(N - 1) + l ) = e(A(N - 1)) + 1 = N 
( 7 ) (e (b(N)) = e(B(N - 1) + l ) = 1 + A(N - 1) = a(N) ' 

The function e is defined by (1.7) in [ l ] : 

(8) e(6\,F2 + '53F3 + • • • ) = 52Fi + S3F2 + ••• . 

To obtain (7) we have used the fact that e(N) is independent of the Fibonacci represen-
tation chosen for N. 

It is also useful to define E(N) by means of 

(9) e(N) = E(N - 1) + 1 ; 

this definition may be compared with (4). Let N have the canonical representation (1) and 
consider 

(10) N + 1 = 1 + • 62 63 64 • • • . 

If 62 = 0 we may write 

N + 1 = • 1 63 64 • • • . 

This representation may not be canonical. However, by (8) we have 

e(N + 1 = 1 + • 635465 . . . . 

Hence, by (8) and (9), 
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(11) E(N) = • S 3 S 4 6 5 * . . 

If §2 = 1, then $3 = 0 and we get 

N + 1 = • 01 64 65 • • • . 

Again this representation may not be canonical but, by (8), 

e(N + 1) = . 1 64 65 • • • = l + . 63 S4 65 • • • . 

It follows that 

E(N) = • 6 3 6 4 6 5 « - . . 

Thus in any case if N has the canonical representation (1), E(N) is determined by 

(11). 
To sum up we state the following. 
Theorem. Let N have the canonical representation 

N = • 626364 

Then 

A(N) = . 0 S 2 S 3 6 4 . . . 

B(N) = • 106 2 6 3 6 4 . . . 

E(N) = . 6 3 6 4 6 5 . . . 

2. Similar observations may be made for Fibonacci representations of higher order . 
For instance, if we put 

(12) A = (0), B = (10), C = (110) , 

then the relations between A, B, C and a, b , c of [2] a re given by 

(13) 
a(N) = A(N - 1) + 1 
b(N) = B(N - 1) + 1 
c(N) = C(N - 1) + 1 
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where N ^ 1. 
3. By Theorem 11 of [ l ] 

(14) 
[ N E ( b ) ^ i < g j < 1, 

where {x} denotes the fractional par t of x. The possibility { N A * 2 } = l/a never occurs . 

We should like to point out that (14) can be replaced by the following slightly s impler 

cri terion. 

(15) 

As above, { # N } = lA*2 is impossible. 
To see that (14) and (15) are equivalent, it suffices to observe that 

J 21 J = {(2 - a)n} = 1 -{>N} . 
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