SOME THEOREMS ON COMPLETENESS

V. E. HOGGATT, JR., and BOB CHOW *
San Jose State University, San Jose, California

1. INTRODUCTION

The notion of completeness was introduced in [1].
Definition. A sequence of positive integers, A, is "complete" if and only if every positive integer, N, is the sum of a subsequence of A. The theorem of Brown [2] gives a necessary and sufficient condition for completeness.

Theorem 1. A sequence of monotonic increasing positive integers, A, is "complete" if and only if:

$$
a_{1}=1 \quad \text { and } \quad a_{n+1} \leq 1+\sum_{k=1}^{n} a_{k} .
$$

Corollary. As an easy consequence of Theorem 1, the sequence $a_{n}=2^{n-1}, n=1,2$, $3, \cdots$ is complete, since $2^{\mathrm{n}+1}=1+\left(2^{\mathrm{n}}+\cdots+2+1\right)$, a well known result.

Theorem 2. The Fibonacci Sequence is complete.
Proof. The identity

$$
F_{n+2}-1=\sum_{k=1}^{n} F_{k}
$$

gives us

$$
F_{n+1} \leq 1+\sum_{k=1}^{n} F_{k}=F_{n+2}
$$

since

$$
F_{n+2}=F_{n+1}+F_{n} .
$$

2. ANOTHER SUFFICIENT CONDITION

Theorem 3. If (i) $a_{1}=1$, (ii) $a_{n+1} \geq a_{n}$, (iii) $a_{n+1} \leq 2 a_{n}$, then sequence A is complete.

$$
\text { Proof. } \quad \begin{aligned}
a_{n+1} & \leq a_{n}+a_{n} \\
& \leq a_{n}+a_{n-1}+a_{n-1} \\
& \leq a_{n}+a_{n-1}+\cdots+a_{1}+a_{1}
\end{aligned}
$$

[^0]by repeated use of conditions (ii) and (iii), thus
$$
a_{n+1} \leq 1+\sum_{k=1}^{n} a_{k}
$$
since (i) gives $a_{1}=1$.
Corollary. The Fibonacci sequence is complete. $\mathrm{F}_{1}=1, \mathrm{~F}_{\mathrm{n}+1} \leq 2 \mathrm{~F}_{\mathrm{n}}$ and $\mathrm{F}_{\mathrm{n}+1} \geq \mathrm{F}_{\mathrm{n}}$. Theorem 4. The sequence $\left\{1, p_{n}\right\}$ is complete, where p_{n} is the nth prime. Proof. By Bertrand's postulate there is a prime in [$\mathrm{n}, 2 \mathrm{n}$] for $\mathrm{n} \geq 1$.
Now $p_{n}<p_{n+1} \leq 2 p_{n}$. Thus by Theorem 3, Theorem 4 is proved.
Theorem 5. The sequence $\left\{1, p_{n}\right\}$ is complete even when an arbitrary prime ≥ 7 is removed.

Proof. By Sierpiñski's Theorem VII in [3], we have for $n>5$ there exists at least two primes between n and $2 n$.

Thus

$$
\mathrm{p}_{\mathrm{n}}<\mathrm{p}_{\mathrm{n}+1}<\mathrm{p}_{\mathrm{n}+2}<2 \mathrm{p}_{\mathrm{n}} .
$$

Clearly, if some p_{n+1} is deleted, then Theorem 3 is still valid. Thus Theorem 5.
Theorem 6. The sequence $\left\{1, p_{n}\right\}$ remains complete even if for $n>5$ we remove an infinite subsequence of primes no two of which are consecutive.

3. COMPLETENESS OF FIBONACCI POWERS

Theorem 7. The sequence of 2^{m-1} copies of F_{k}^{m} is complete. Proof.

$$
\frac{\mathrm{F}_{\mathrm{n}+1}^{\prime}}{\mathrm{F}_{\mathrm{n}}} \leq 2 \quad \text { for } \quad \mathrm{n} \geq 3
$$

and

$$
\left(\frac{\mathrm{F}_{\mathrm{n}+1}}{\bar{F}_{\mathrm{n}}^{\prime}}\right)^{4} \leq 2^{3} \quad \text { for } \quad \mathrm{n} \geq 3
$$

Thus

$$
\left(\frac{\mathrm{F}_{\mathrm{n}+1}}{\mathrm{~F}_{\mathrm{n}}}\right)^{\mathrm{m}} \leq 2^{\mathrm{m}-1} \quad \text { for } \quad \mathrm{m} \geq 4, \quad \mathrm{n} \geq 3
$$

Now:

$$
\mathrm{F}_{\mathrm{n}+1}^{\mathrm{m}} \leq 2^{\mathrm{m}-1} \mathrm{~F}_{\mathrm{n}}^{\mathrm{m}} \leq 1+2^{\mathrm{m}-1} \sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{~F}_{\mathrm{k}}^{\mathrm{m}}
$$

For $m=1$, the theorem is true by Theorem 2. For $m=2$, we have

$$
\mathrm{F}_{1}^{2}+\mathrm{F}_{2}^{2}+\cdots+\mathrm{F}_{\mathrm{n}}^{2}=\mathrm{F}_{\mathrm{n}} \mathrm{~F}_{\mathrm{n}+1}
$$

shows that one copy is not enough.
Let $a_{2 n}=a_{2 n+1}=F_{n}^{2}$, then clearly

$$
a_{2 n+1} \leq 1+\sum_{k=1}^{2 n} a_{k},
$$

since

$$
\begin{gathered}
a_{2 n+1}=a_{2 n} \\
\sum_{k=1}^{2 n} a_{k}=2\left(F_{1}^{2}+F_{2}^{2}+\cdots+F_{n}^{2}\right)=2 F_{n} F_{n+1}
\end{gathered}
$$

Thus

$$
\begin{aligned}
\mathrm{a}_{2 \mathrm{n}+2} & =\mathrm{F}_{\mathrm{n}+1}^{2} \\
& \leq 1+2 \mathrm{~F}_{\mathrm{n}} \mathrm{~F}_{\mathrm{n}+1}
\end{aligned}
$$

since

$$
\mathrm{F}_{\mathrm{n}+1} \leq 2 \mathrm{~F}_{\mathrm{n}}
$$

Therefore by Theorem 1 it is complete. For $m=3$, four copies of F_{n}^{3} is complete from [5]. Theorem 7 is proved. See Brown [4].

In [5] is the following Theorem which we cite without proof:
Theorem 8. If any $a_{n}, n \leq 6$, is deleted from the two copies of the Fibonacci Squares, the sequence remains complete, while if $n \geq 7$, the sequence becomes incomplete.

In [5] the following theorem is given:
Theorem 9. If four copies of F_{n}^{3} forms a sequence, then the sequence remains complete if F_{k}^{3} is removed for k odd and becomes incomplete if F_{k}^{3} is removed for k even.

The following conjecture was given by O'Connell in [5]:
Theorem 10. If $\mathrm{m} \geq 4$, the $2^{\mathrm{m}-1}$ copies of $\mathrm{F}_{\mathrm{n}}^{\mathrm{m}}$ remains complete even if a $\mathrm{F}_{\mathrm{k}}^{\mathrm{m}}$ is removed.

Proof. Since $F_{n+1}^{m} \leq 2^{m-1} F_{n}^{m}$ for $n \geq 3 ; m \geq 4$, then

$$
F_{n+k+1}^{m} \leq 2^{m-1} F_{n+k}^{m} \leq 1+2^{m-1} \sum_{s=1}^{n+k} F_{s}^{m}-F_{n}^{m}
$$

From Theorem 8, the sequence is complete up to terms using $2^{m-1} F_{n}^{m}$ clearly if we delete one $\mathrm{F}_{\mathrm{k}}^{\mathrm{m}}$ the first possible difficulty appears at $\mathrm{k}=1$ above. Clearly this causes no trouble for $k \geq 0$. The result follows and the proof of Theorem 10 is finished.

Theorem 11. If $m=4 k$, then the sequence of 2^{m-1} copies of F_{n}^{k} remains complete even if $2^{\mathrm{k}-1}$ of the $\mathrm{F}_{\mathrm{n}}^{\mathrm{m}}$ are deleted.

Proof.

$$
\left(\frac{F_{n+1}}{\bar{F}_{n}}\right) \leq 2 \quad \text { for } \quad n \geq 3
$$

then

$$
\begin{aligned}
F_{n+1}^{4 k} & \left.\leq 2^{3 k} F_{n}^{F_{n+1}}\right)^{4 k}=F_{n}^{4 k}+\left(2^{3 k}-1\right) F_{n}^{4 k} \\
& \leq 2^{3 k} F_{n-1}^{4 k}+2^{k-1}\left(2^{3 k}-1\right) F_{n}^{4 k} \\
& \leq 2^{4 k-1} \sum_{i=1}^{n-1} F_{i}^{4 k}+\left(2^{4 k-1}-2^{k-1}\right) F_{n}^{4 k} \\
& \leq 1+2^{4 k-1} \sum_{i=1}^{n} F_{i}^{4 k}-2^{k-1} F_{n}^{4 k}
\end{aligned}
$$

then let $\mathrm{m}=4 \mathrm{k}$;

$$
\mathrm{F}_{\mathrm{n}+1}^{\mathrm{m}} \leq 1+2^{\mathrm{m}-1} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{~F}_{\mathrm{i}}^{\mathrm{m}}-2^{\mathrm{k}-1} \mathrm{~F}_{\mathrm{n}}^{\mathrm{m}}
$$

Thus $2^{\mathrm{k}-1}$ copies of $\mathrm{F}_{\mathrm{n}}^{\mathrm{m}}$ can be deleted without loss of completeness. Further: Theorem 12.

$$
\sum_{i=1}^{k} \alpha_{i} F_{s_{i}}^{m}
$$

can be deleted without loss of completeness, and where $\alpha_{i} \leq 2^{\mathrm{k}-1}$

$$
\sum_{i=1}^{k} \alpha_{i} F_{s_{i}}^{m} \leq 2^{k-1} F_{s_{k}}^{m}
$$

Proof. As a consequence of Theorem 11, we have

$$
\sum_{i=1}^{\mathrm{k}} \alpha_{\mathrm{i}} \mathrm{~F}_{\mathrm{s}_{\mathrm{i}}}^{\mathrm{m}} \leq 2^{\mathrm{k}-1} \mathrm{~F}_{\mathrm{s}_{\mathrm{k}}}^{\mathrm{m}} \quad \alpha_{\mathrm{i}} \leq 2^{\mathrm{k}-1}
$$

Thus:

$$
\mathrm{F}_{\mathrm{n}+1}^{\mathrm{m}} \leq 1+2^{\mathrm{m}-1} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{~F}_{\mathrm{i}}^{\mathrm{m}}-\sum_{\mathrm{i}=1}^{\mathrm{k}} \alpha_{\mathrm{i}} \mathrm{~F}_{\mathrm{s}_{\mathrm{i}}}^{\mathrm{m}}
$$

[Continued on page 560.]

[^0]: * Partially supported by NSF Grant GY9923, Undergraduate Research Participation Program in Mathematics, Summer 1972, University of Santa Clara.

