SOME THEOREMS ON COMPLETENESS

V. E. HOGGATT, JR., and BOB CHOW* San Jose State University, San Jose, California

1. INTRODUCTION

The notion of completeness was introduced in [1].

<u>Definition</u>. A sequence of positive integers, A, is "complete" if and only if every positive integer, N, is the sum of a subsequence of A. The theorem of Brown [2] gives a necessary and sufficient condition for completeness.

<u>Theorem 1.</u> A sequence of monotonic increasing positive integers, A, is "complete" if and only if:

$$a_1 = 1$$
 and $a_{n+1} \leq 1 + \sum_{k=1}^{n} a_k$.

<u>Corollary</u>. As an easy consequence of Theorem 1, the sequence $a_n = 2^{n-1}$, $n = 1, 2, 3, \cdots$ is complete, since $2^{n+1} = 1 + (2^n + \cdots + 2 + 1)$, a well known result.

 $\underline{ Theorem \ 2.} \quad The \ Fibonacci \ Sequence \ is \ complete.$

Proof. The identity

$$\mathbf{F}_{n+2} - \mathbf{1} = \sum_{k=1}^{n} \mathbf{F}_{k}$$

gives us

$$F_{n+1} \leq 1 + \sum_{k=1}^{n} F_k = F_{n+2}$$

since

$$F_{n+2} = F_{n+1} + F_n$$
.

2. ANOTHER SUFFICIENT CONDITION

<u>Theorem 3.</u> If (i) $a_1 = 1$, (ii) $a_{n+1} \ge a_n$, (iii) $a_{n+1} \le 2a_n$, then sequence A is complete.

Proof.

$$\begin{array}{rcl}
a_{n+1} &\leq & a_{n} + a_{n} \\
&\leq & a_{n} + a_{n-1} + a_{n-1} \\
&\leq & a_{n} + a_{n-1} + \dots + a_{1} + a_{1}
\end{array}$$

^{*} Partially supported by NSF Grant GY9923, Undergraduate Research Participation Program in Mathematics, Summer 1972, University of Santa Clara.

$$a_{n+1} \leq 1 + \sum_{k=1}^{n} a_k$$

since (i) gives $a_1 = 1$.

<u>Corollary</u>. The Fibonacci sequence is complete. $F_1 = 1$, $F_{n+1} \le 2F_n$ and $F_{n+1} \ge F_n$. <u>Theorem 4</u>. The sequence $\{1, p_n\}$ is complete, where p_n is the nth prime.

<u>Proof.</u> By Bertrand's postulate there is a prime in [n, 2n] for $n \ge 1$.

Now $p_n < p_{n+1} \le 2p_n$. Thus by Theorem 3, Theorem 4 is proved.

<u>Theorem 5.</u> The sequence $\{1, p_n\}$ is complete even when an arbitrary prime ≥ 7 is removed.

<u>Proof</u>. By Sierpiñski's Theorem VII in [3], we have for n > 5 there exists at least two primes between n and 2n.

Thus

$$p_n < p_{n+1} < p_{n+2} < 2p_n$$

Clearly, if some p_{n+1} is deleted, then Theorem 3 is still valid. Thus Theorem 5.

<u>Theorem 6.</u> The sequence $\{1, p_n\}$ remains complete even if for n > 5 we remove an infinite subsequence of primes no two of which are consecutive.

3. COMPLETENESS OF FIBONACCI POWERS

Theorem 7. The sequence of 2^{m-1} copies of ${\boldsymbol{F}}_k^m$ is complete. Proof.

$$\frac{F_{n+1}}{F_n} \le 2 \quad \text{for} \quad n \ge 3$$

and

$$\left(\frac{F_{n+1}}{F_n}\right)^4 \le 2^3 \quad \text{for} \quad n \ge 3$$
.

Thus

$$\left(\frac{F_{n+1}}{F_n}\right)^m \leq 2^{m-1}$$
 for $m \geq 4$, $n \geq 3$.

Now:

$$F_{n+1}^{m} \leq 2^{m-1} F_{n}^{m} \leq 1 + 2^{m-1} \sum_{k=1}^{n} F_{k}^{m}$$

For m = 1, the theorem is true by Theorem 2. For m = 2, we have

$$F_1^2 + F_2^2 + \cdots + F_n^2 = F_n F_{n+1}$$

552

shows that one copy is not enough.

Let
$$a_{2n}^{}=a_{2n+1}^{}=F_n^2$$
 , then clearly
$$a_{2n+1}^{}\leq 1+\sum_{k=1}^{2n}\,a_k^{}\mbox{,}$$

since

$$a_{2n+1} = a_{2n}$$

$$\sum_{k=1}^{2n} a_k = 2(F_1^2 + F_2^2 + \cdots + F_n^2) = 2F_n F_{n+1}$$

Thus

$$a_{2n+2} = F_{n+1}^{2}$$

$$\leq 1 + 2F_{n} F_{n+1}$$

since

$$F_{n+1} \leq 2F_n$$
.

Therefore by Theorem 1 it is complete. For m = 3, four copies of F_n^3 is complete from [5]. Theorem 7 is proved. See Brown [4].

In [5] is the following Theorem which we cite without proof:

<u>Theorem 8.</u> If any a_n , $n \le 6$, is deleted from the two copies of the Fibonacci Squares, the sequence remains complete, while if $n \ge 7$, the sequence becomes incomplete.

In [5] the following theorem is given:

<u>Theorem 9.</u> If four copies of F_n^3 forms a sequence, then the sequence remains complete if F_k^3 is removed for k odd and becomes incomplete if F_k^3 is removed for k even.

The following conjecture was given by O'Connell in [5]: <u>Theorem 10.</u> If $m \ge 4$, the 2^{m-1} copies of F_n^m remains complete even if a F_k^m is removed.

<u>Proof.</u> Since $F_{n+1}^m \leq 2^{m-1} F_n^m$ for $n \geq 3$; $m \geq 4$, then

$$F_{n+k+1}^m \leq 2^{m-1} F_{n+k}^m \leq 1 + 2^{m-1} \sum_{s=1}^{n+k} F_s^m - F_n^m$$

From Theorem 8, the sequence is complete up to terms using $2^{m-1} F_n^m$ clearly if we delete one F_k^m the first possible difficulty appears at k = 1 above. Clearly this causes not rouble for $k \ge 0$. The result follows and the proof of Theorem 10 is finished.

Theorem 11. If m = 4k, then the sequence of 2^{m-1} copies of F_n^k remains complete even if 2^{k-1} of the F_n^m are deleted.

Proof.

$$\left(\frac{F_{n+1}}{F_n}\right) \leq 2 \quad \text{for} \quad n \geq 3$$

then

$$\begin{pmatrix} \frac{F_{n+1}}{F_n} \end{pmatrix}^{4k} \leq 2^{3k}$$

$$F_{n+1}^{4k} \leq 2^{3k} F_n^{4k} = F_n^{4k} + (2^{3k} - 1)F_n^{4k}$$

$$\leq 2^{3k} F_{n-1}^{4k} + 2^{k-1} (2^{3k} - 1)F_n^{4k}$$

$$\leq 2^{4k-1} \sum_{i=1}^{n-1} F_i^{4k} + (2^{4k-1} - 2^{k-1})F_n^{4k}$$

$$\leq 1 + 2^{4k-1} \sum_{i=1}^n F_i^{4k} - 2^{k-1} F_n^{4k}$$

then let m = 4k;

$$F_{n+1}^{m} \leq 1 + 2^{m-1} \sum_{i=1}^{n} F_{i}^{m} - 2^{k-1} F_{n}^{m}$$

Thus 2^{k-1} copies of F_n^m can be deleted without loss of completeness. Further: Theorem 12.

$$\sum_{i=1}^k {}^{\boldsymbol{\alpha}_i} \; {}^{\mathbf{F}}{}^{\mathbf{m}}_{\mathbf{s}_i}$$

can be deleted without loss of completeness, and where α_{i} \leq 2^{k-1}

$$\sum_{i=1}^{k} \alpha_i \mathbf{F}_{\mathbf{s}_i}^{\mathbf{m}} \leq 2^{k-1} \mathbf{F}_{\mathbf{s}_k}^{\mathbf{m}}$$

Proof. As a consequence of Theorem 11, we have

$$\sum_{i=1}^{k} \alpha_i F_{s_i}^m \leq 2^{k-1} F_{s_k}^m \qquad \alpha_i \leq 2^{k-1} .$$

Thus:

$$F_{n+1}^{m} \leq 1 + 2^{m-1} \sum_{i=1}^{n} F_{i}^{m} - \sum_{i=1}^{k} \alpha_{i} F_{s_{i}}^{m}$$

[Continued on page 560.]