2. Verner E. Hoggatt, Jr., "Fibonacci Numbers and the Generalized Binomial Coefficients," Fibonacci Quarterly, Vol. 5, No. 4, November 1967, pp. 383-400.
3. Brother Alfred Brousseau, Fibonacci and Related Number Theoretic Tables, Fibonacci Association, San Jose State College, San Jose, California, 1972.
4. Ellen L. King, "Some Fibonacci Inverse Trigonometry," Unpublished Master's Thesis, San Jose State College, San Jose State College, San Jose, Calif., July, 1969.
5. Marjorie Bicknell and Verner E. Hoggatt, Jr., "A Primer for the Fibonacci Numbers: Part IX. To Prove: F_{n} Divides F_{nk}," Fibonacci Quarterly, Vol. 9, No. 5, Dec. 1971, pp. 529-536.
6. Mark Feinberg, "Lucas Triangle," Fibonacci Quarterly, Vol. 5, No. 5, Dec. 1967, pp. 486-490.
7. Marjorie Bicknell, "A Primer for the Fibonacci Numbers: Part VII. An Introduction to Fibonacci Polynomials and Their Divisibility Properties," Fibonacci Quarterly, Vol. 8, No. 4, Oct. 1970, pp. 407-420.
8. V. E. Hoggatt, Jr., and D. A. Lind, "Symbolic Substitutions Into Fibonacci Polynomials," Fibonacci Quarterly, Vol. 6, No. 5, Nov. 1968, pp. 55-74.
$\rightarrow \infty$
[Continued from page 554.]

SOME THEOREMS ON COMPLETENESS

holds true and Theorem 12 is completed.
Corollary. The hypothesis of Theorem 3 is not a necessary condition. From Theorem 7 , clearly $F_{n+1}^{m} \leq 2 F_{n}^{m}$ for $n \geq 3, m \geq 4$, and that the sequence 2^{m-1} copies of F_{n}^{m} is complete.

REFERENCES

1. V. E. Hoggatt, Jr., and C. H. King, Problem E-1424, American Math. Monthly, Problem p. 593, Vol. 67, June-July 1960.
2. John L. Brown, Jr., "Note on Complete Sequences," American Math. Monthly, Vol. 68, June-July 1961, pp. 557-561.
3. W. Sierpiñski, Theory of Numbers, 1964, p. 137.
4. John L. Brown, Jr., "A Generalization of Semi-Completeness for Integer Sequences," Fibonacci Quarterly, Vol. 1, No. 1 (1963), pp. 3-15.
5. Roger O'Connell, Unpublished thesis, San Jose State College, San Jose, Calif., Jan. 1970, p. 115.
6. Roger O'Connell, "Representation of Integers as Sums of Fibonacci Squares," Fibonacci Quarterly, Vol. 10, No. 1 (1972), pp. 103-112.
