FIBONACCI AND LUCAS TRIANGLES

V. E. HOGGATT, JR., MARJORIE BICKNELL, and ELLEN L. KING San Jose State University, San Jose, California

1. INTRODUCTION

We first define four sequences of polynomials and lay out two fundamental identities. Let

(a)
$$f_0(x) = 0$$
, $f_1(x) = 1$, and $f_{n+2}(x) = x f_{n+1}(x) + f_n(x)$.

These are the Fibonacci polynomials, and $f_n(1) = F_n$. Let

(b)
$$L_0(x) = 2$$
, $L_1(x) = x$, and $L_{n+2}(x) = xL_{n+1}(x) + L_n(x)$,

which are the Lucas polynomials. It is easy to show that

$$L_n(x) = f_{n+1}(x) + f_{n-1}(x), \quad L_n^2(x) - (x^2 + 4)f_n^2(x) = (-1)^n 4, \text{ and } L_n(1) = L_n.$$

These are two well known polynomial sequences which have been much discussed in these pages. Both enjoy Binet forms. Let $\lambda^2 - x\lambda - 1 = 0$ have roots

$$\begin{split} \lambda_1 &= \frac{x + \sqrt{x^2 + 4}}{2} \quad \text{and} \quad \lambda_2 &= \frac{x - \sqrt{x^2 + 4}}{2} \quad . \\ & f_n(x) &= \frac{\lambda_1^n - \lambda_2^n}{\lambda_1 - \lambda_2} \quad \text{and} \quad L_n(x) &= \lambda_1^n + \lambda_2^n \quad , \\ \lambda_1^n &= \frac{L_n(x) + \sqrt{x^2 + 4} f_n(x)}{2} \quad \text{and} \quad \lambda_2^n &= \frac{L_n(x) - \sqrt{x^2 + 4} f_n(x)}{2} \end{split}$$

Next we introduce two polynomial sequences closely related to the Chebysheff polynomials of the first and second kind which were introduced in [2]. Let

.

It is easy to establish

Then

,

$$h_n^2(x) - (x^2 - 4)g_n^2(x) = 4$$
 and $h_n(x) = g_{n+1}(x) + g_{n-1}(x)$,

and if $\lambda^2 - x\lambda + 1 = 0$ has roots

$$\lambda_1^*(x) = \frac{x + \sqrt{x^2 - 4}}{2}$$
 and $\lambda_2^*(x) = \frac{x - \sqrt{x^2 - 4}}{2}$

then, for $x \neq \pm 2$,

$$g_{n}(x) = \frac{\lambda_{1}^{*n}(x) - \lambda_{2}^{*n}(x)}{\lambda_{1}^{*}(x) - \lambda_{2}^{*}(x)} \quad \text{and} \quad h_{n}(x) = \lambda_{1}^{*n}(x) + \lambda_{2}^{*n}(x) ,$$

while $g_n(2) = n$ and $g_n(-2) = -n$, $n = 0, 1, 2, \cdots$. As with Fibonacci polynomials, $g_n(x)$ have their coefficients lying along the rising diagonals of Pascal's triangle.

2. SUBSTITUTIONS INTO POLYNOMIAL SEQUENCES

Consider

$$\lambda_1(\mathbf{x}) = \frac{\mathbf{x} + \sqrt{\mathbf{x}^2 + 4}}{2}$$

for x replaced by $L_{2n+1}(x)$. From $L_n^2(x) - (x^2 + 4)f_n^2(x) = 4(-1)^n$ we see that

$$\lambda_1(L_{2n+1}(x)) = \frac{L_{2n+1}(x) + \sqrt{x^2 + 4} f_{2n+1}(x)}{2}$$

which from

$$\begin{split} \lambda_1^n(\mathbf{x}) &= \left[\, \mathbf{L}_n(\mathbf{x}) \, + \, \sqrt{\mathbf{x}^2 \, + \, 4} \, \mathbf{f}_n(\mathbf{x}) \, \right] / 2 \\ \lambda_1(\mathbf{L}_{2n+1}(\mathbf{x})) &= \, \lambda_1^{2n+1}(\mathbf{x}) \, . \end{split}$$

Similarly,

becomes

$$\lambda_2(L_{2n+1}(x)) = \lambda_2^{2n+1}(x)$$
.

Now let us look at

$$f_{m}(L_{2n+1}(x)) = \frac{\lambda_{1}^{m}(L_{2n+1}(x)) - \lambda_{2}^{m}(L_{2n+1}(x))}{\lambda_{1}(L_{2n+1}(x)) - \lambda_{2}(L_{2n+1}(x))}$$
$$= \frac{\lambda_{1}^{m}(2n+1)(x) - \lambda_{2}^{m}(2n+1)(x)}{\lambda_{1}^{2n+1}(x) - \lambda_{2}^{2n+1}(x)} = \frac{f_{m}(2n+1)(x)}{f_{2n+1}(x)}$$

by dividing numerator and denominator by $\lambda_1(x) - \lambda_2(x)$ and using the Binet form for the Fibonacci polynomials. We note that since the coefficients of both polynomial sequences $f_n(x)$

556

and $L_n(x)$ are integers, then $f_m(L_{2n+1}(x))$ is a polynomial and $f_{m(2n+1)}(x)/f_{2n+1}(x)$ is a polynomial. Letting x = 1 shows that $F_{2n+1} | F_m(2n+1)^{\circ}$

If instead we use $L_{2n}^{2}(x) - 4 = (x^{2} + 4)f_{2n}^{2}(x)$, then

$$\lambda_1^*(x) = \frac{x + \sqrt{x^2 - 4}}{2}$$
, $\lambda_2^*(x) = \frac{x - \sqrt{x^2 - 4}}{2}$

becomes

$$\lambda_{1}^{*}(L_{2n}(x)) = \frac{L_{2n}(x) + \sqrt{x^{2} + 4 f_{2n}(x)}}{2} = \lambda_{1}^{2n}(x)$$

$$\lambda_{2}^{*}(L_{2n}(x)) = \frac{L_{2n}(x) - \sqrt{x^{2} + 4} f_{2n}(x)}{2} = \lambda_{2}^{2n}(x)$$
$$g_{m}(x) = \frac{\lambda_{1}^{*m}(x) - \lambda_{2}^{*m}(x)}{\lambda_{1}^{*}(x) - \lambda_{2}^{*}(x)}$$

so that

becomes, when x is replaced by $L_{2n}(x)$,

$$g_{m}(L_{2n}(x)) = \frac{\lambda_{1}^{*m}(L_{2n}(x)) - \lambda_{2}^{*m}(L_{2n}(x))}{\lambda_{1}^{*}(L_{2n}(x)) - \lambda_{2}^{*}(L_{2n}(x))}$$
$$= \frac{\lambda_{1}^{2mn}(x) - \lambda_{2}^{2mn}(x)}{\lambda_{1}^{2n} - \lambda_{2}^{2n}} = \frac{f_{2mn}(x)}{f_{2n}(x)}$$

as before using the Binet form for the Fibonacci polynomials. Again $g_m(L_{2n}(x))$ is a polynomial when x = 1, $F_{2n} | F_{2mn}$.

Summarizing,

(A)
$$f_{(2n+1)m}(x) = f_{2n+1}(x) f_m(L_{2n+1}(x))$$

(A)
$$f_{(2n+1)m}(x) = f_{2n+1}(x) f_m(L_{2n+1}(x))$$

(B) $f_{2nm}(x) = f_{2n}(x) g_m(L_{2n}(x))$

Using the explicit formulas for the polynomials $\mbox{f}_n(x)$ and $\mbox{g}_n(x),$ we have

$$f_{n+1}(x) = \sum_{k=0}^{\lfloor n/2 \rfloor} {\binom{n+1-k}{k}} x^{n-2k}, \qquad g_{n+1}(x) = \sum_{k=0}^{\lfloor n/2 \rfloor} {\binom{n+1-k}{k}} (-1)^k x^{n-2k}$$

Then, we can combine (A) and (B) into one formula,

$$f_{nk}(x) = f_k(x) \sum_{j=0}^{\lfloor n/2 \rfloor} {\binom{n-1-j}{j}} (-1)^{(k+1)(j+1)} L_k^{n-2j-1}(x) ,$$

This justifies the formula reported by Brother Alfred in [3], Table 41, when x = 3, but, of course, holds for other x as well.

3. THE LUCAS TRIANGLE

The polynomial sequences $L_n(x)$ and $h_n(x)$ for each n have the same coefficients except those of $h_n(x)$ alternate in sign. If we call the coefficient array for the Lucas polynomials the Lucas Triangle, then we can get a result similar to that above as reported for Table 42 in [3]. See also [1], [4], [5], and [6]. First,

$$\lambda_1(\mathbf{L}_{2n+1}(\mathbf{x})) = \lambda_1^{2n+1}(\mathbf{x}) \quad \text{and} \quad \lambda_2(\mathbf{L}_{2n+1}(\mathbf{x})) = \lambda_2^{2n+1}(\mathbf{x})$$

so that

$$L_{m}(L_{2n+1}(x)) = \lambda_{1}^{(2n+1)m}(x) + \lambda_{2}^{(2n+1)m}(x) = L_{m(2n+1)}(x).$$

Next

$$\lambda_1^*(\mathbf{L}_{2n}(\mathbf{x})) = \lambda_1^{2n}(\mathbf{x}) \quad \text{and} \quad \lambda_2^*(\mathbf{L}_{2n}(\mathbf{x})) = \lambda_2^{2n}(\mathbf{x})$$

so that

$$h_n(L_{2n}(x)) = \lambda_1^{2mn}(x) + \lambda_2^{2mn}(x) = L_{2mn}(x)$$
.

This evidently establishes the counterpart for the Lucas polynomials.

We note in passing that $L_0(x) = 2$, $L_1(x) = x$, and from

$$L_{n+2}(x) = xL_{n+1}(x) + L_n(x), \qquad L_2(x) = x^2 + 2.$$

Thus the ${\rm L}_{2n+1}({\rm x})$ are divisible by x. This also holds for ${\rm h}_{2n+1}({\rm x})$. Thus,

$$L_{2m+1}(L_{2n+1}(x)) = L_{(2m+1)(2n+1)}(x)$$

$$h_{2m+1}(L_{2n}(x)) = L_{(2m+1)(2n)}(x)$$

4. SOME OTHER RESULTS

Suppose

$$f_{n+2}(x) = x f_{n+1}(x) + f_n(x);$$
 $f_0(x) = 0, f_1(x) = 1.$

Next let $x = \alpha$, where $\alpha^2 = \alpha + 1$; then

$$f_n(\alpha) = \alpha P_n + Q_n$$
.

Here we seek recurrences for the sequences P_n and Q_n . Thus

FIBONACCI AND LUCAS TRIANGLES $\alpha P_{n+2} + Q_{n+2} = \alpha(\alpha P_{n+1} + Q_{n+1}) + (\alpha P_n + Q_n)$

and

1972]

$$\begin{split} \mathbf{P}_{n+2} &= \mathbf{P}_{n+1} + \mathbf{P}_n + \mathbf{Q}_{n+1} \\ \mathbf{Q}_{n+2} &= \mathbf{P}_{n+1} + \mathbf{Q}_n \\ \mathbf{P}_{n+1} &= \mathbf{P}_n + \mathbf{P}_{n-1} + \mathbf{Q}_n \\ \mathbf{P}_{n+3} &= \mathbf{P}_{n+2} + \mathbf{P}_{n+1} + \mathbf{Q}_{n+2} \end{split}$$

Subtracting

$$P_{n+3} - P_{n+1} = P_{n+2} - P_n + P_{n+1} - P_{n-1} + Q_{n+2} - Q_n$$

Thus

$$P_{n+3} = P_{n+2} + 3P_{n+1} - P_n - P_{n-1}$$

 since

$$Q_{n+2} - Q_n = P_{n+1}$$
 ,

whose auxiliary polynomial is

 $x^4 = x^3 + 3x^2 - x - 1$.

This agrres with the results in [8].

Now, let $\lambda^2 = x\lambda + 1$. Then

$$f_n(\lambda) = \lambda P_n + Q_n$$
,

when P_n and Q_n are polynomials in λ .

$$\begin{split} \lambda \mathbf{P}_{n+2} + \mathbf{Q}_{n+2} &= \lambda (\lambda \mathbf{P}_{n+1} + \mathbf{Q}_{n+1}) + \lambda \mathbf{P}_n + \mathbf{Q}_n \\ &= x \lambda \mathbf{P}_{n+1} + \mathbf{P}_{n+1} + \lambda \mathbf{Q}_{n+1} + \lambda \mathbf{P}_n + \mathbf{Q}_n \end{split} \text{.}$$

Thus

$$\begin{split} \mathbf{P}_{n+2} &= \mathbf{x} \mathbf{P}_{n+1} + \mathbf{P}_n + \mathbf{Q}_{n+1} \\ \mathbf{Q}_{n+2} &= \mathbf{P}_{n+1} + \mathbf{Q}_n \end{split},$$

so that, using the same techniques as before, we find

$$\begin{split} \mathbf{P}_{n+3} &= \mathbf{x}\mathbf{P}_{n+2} + \mathbf{P}_{n+1} + \mathbf{Q}_{n+2} \\ \mathbf{P}_{n+1} &= \mathbf{x}\mathbf{P}_n + \mathbf{P}_{n-1} + \mathbf{Q}_n \\ \mathbf{P}_{n+3} - \mathbf{P}_{n+1} &= \mathbf{x}\mathbf{P}_{n+2} + \mathbf{P}_{n+1} - \mathbf{x}\mathbf{P}_n - \mathbf{P}_{n-1} + (\mathbf{Q}_{n+2} - \mathbf{Q}_n) \end{split}$$

yielding

$$P_{n+3} = xP_{n+2} + 3P_{n+1} - xP_n - P_{n-1}$$

which agrees with Eq. (8), particularly result (iii), in [8].

REFERENCES

 Verner E. Hoggatt, Jr., "An Application of the Lucas Triangle," <u>Fibonacci Quarterly</u>, Vol. 8, No. 4, Oct. 1970, pp. 360-364.

559

- Verner E. Hoggatt, Jr., "Fibonacci Numbers and the Generalized Binomial Coefficients," Fibonacci Quarterly, Vol. 5, No. 4, November 1967, pp. 383-400.
- 3. Brother Alfred Brousseau, <u>Fibonacci and Related Number Theoretic Tables</u>, Fibonacci Association, San Jose State College, San Jose, California, 1972.
- 4. Ellen L. King, "Some Fibonacci Inverse Trigonometry," Unpublished Master's Thesis, San Jose State College, San Jose State College, San Jose, Calif., July, 1969.
- Marjorie Bicknell and Verner E. Hoggatt, Jr., "A Primer for the Fibonacci Numbers: Part IX. To Prove: F_n Divides F_{nk}," <u>Fibonacci Quarterly</u>, Vol. 9, No. 5, Dec. 1971, pp. 529-536.
- 6. Mark Feinberg, "Lucas Triangle," <u>Fibonacci Quarterly</u>, Vol. 5, No. 5, Dec. 1967, pp. 486-490.
- Marjorie Bicknell, "A Primer for the Fibonacci Numbers: Part VII. An Introduction to Fibonacci Polynomials and Their Divisibility Properties," <u>Fibonacci Quarterly</u>, Vol. 8, No. 4, Oct. 1970, pp. 407-420.
- V. E. Hoggatt, Jr., and D. A. Lind, "Symbolic Substitutions Into Fibonacci Polynomials," <u>Fibonacci Quarterly</u>, Vol. 6, No. 5, Nov. 1968, pp. 55-74.

[Continued from page 554.]

SOME THEOREMS ON COMPLETENESS

holds true and Theorem 12 is completed.

<u>Corollary</u>. The hypothesis of Theorem 3 is not a necessary condition. From Theorem 7, clearly $F_{n+1}^m \leq 2F_n^m$ for $n \geq 3$, $m \geq 4$, and that the sequence 2^{m-1} copies of F_n^m is complete.

REFERENCES

- 1. V. E. Hoggatt, Jr., and C. H. King, Problem E-1424, <u>American Math. Monthly</u>, Problem p. 593, Vol. 67, June-July 1960.
- 2. John L. Brown, Jr., "Note on Complete Sequences," <u>American Math. Monthly</u>, Vol. 68, June-July 1961, pp. 557-561.
- 3. W. Sierpiński, Theory of Numbers, 1964, p. 137.
- 4. John L. Brown, Jr., "A Generalization of Semi-Completeness for Integer Sequences," Fibonacci Quarterly, Vol. 1, No. 1 (1963), pp. 3-15.
- Roger O'Connell, Unpublished thesis, San Jose State College, San Jose, Calif., Jan. 1970, p. 115.
- 6. Roger O'Connell, "Representation of Integers as Sums of Fibonacci Squares," <u>Fibonacci</u> Quarterly, Vol. 10, No. 1 (1972), pp. 103-112.

560