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1. INTRODUCTION

We first define four sequences of polynomials and lay out two fundamental identities.

Let
(a) fpx) = 0, fix) =1, and fn+2(x) = xfn+1(x) + fn(x) .

These are the Fibonacci polynomials, and fn(l) = Fn. Let

(b) Lik) =2, ILji®) =x, and L_ ) = an+1(x) + Ln(x) )

n+2

which are the Lucas polynomials. It is easy to show that

LG =£f,6+f & L2&-&+92& = (D', and L @) =L .

These are two well known polynomial sequences which have been much discussed in these

pages. Both enjoy Binet forms. Let A%2-xXA-1 = 0 have roots

2 _ 2
7\1=x+\/2x+4 and )\2=x '\ix+4
Then
n n
) AR AT o .
B =xmx o L= A
L (x) + Nx2 + 4 f (x) L ® - N2 + 4f (x)
Af = =2 2 and AR =B n
i 2 2 2

Next we introduce two polynomial sequences closely related to the Chebysheff polynomials of
the first and second kind which were introduced in [2]. Let

gx) = 0, g& =1, and gn+2(X) = xgn+1(X) - gn(X) s
hy®) = 2, h&® = x, and hn+2(x) = xhn+1(x) - hn(x).

It is easy to establish
555
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&) - & - 4gix) =4 and h & =g & +g &,

and if A2 -xX +1 = 0 has roots

X + Nx? - 4 * x - NxZ - 4

M) = 5 and AN® = ——m—

then, for x # +2,

) - % )
® = — and h x) = )\fn(X) + X;n(x) s
M® - e n

®n
while gn(z) =n and gn(—z) =-n, n=20,1, 2, ***. As with Fibonacci polynomials, gn(x)
have their coefficients lying along the rising diagonals of Pascal's triangle.

2. SUBSTITUTIONS INTO POLYNOMIAL SEQUENCES

Consider

X+ Nx2 + 4

M) = )

for x replaced by L (x). From lea(X) - (x2 +4)ff1(x) = 4(-1)" we see that

2n+1

(x)+'\/x+ 4 f

2n+1 2n +1

AL x) =

2n+1
which from
AME = [LE + N+ 4t @]/2

becomes
My @) = 276
Similarly,
ALy @) = 256
Now let us look at
ALy 1 () = ALy 4 ()
fnTonn ®) = (T, )~ A, )
m(2n+1) m(2n+1)
M (x) - ® Loy ®
Ay a2ty fonia ®

by dividing numerator and denominator by A4(x) - A9(x) and using the Binet form for the Fib-
onacci polynomials. We note that since the coefficients of both polynomial sequences fn(x)
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m " 2n+1

and L (x) are integers, then f_ (L i i i
n ) ger en ( (x)) is a polynomial and fm(Zn +1)(X)/f‘2n +1(x) is a
polynomial. Letting x = 1 shows that F

2n+1| Fm(2n+1)'
If instead we use LZZn(X) -4 = (x2+ 4)f22n(x), then

)
2 ®) =_’E_+_2X_'_4_, A () =L.2_X2_:_é
becomes
L, ) + Nx2 + 4f (x)
* 2 2
MLy, ) = -2 . L =P
L, (x) - :\’XZ + 4 f (%)
X (L, ) = 22 —2 = 2w
so that
NP - MM
gm(X) =

MNE -

becomes, when x is replaced by L2n(x),

AT L, () - 23T (L, ()

g Ly () =
m M Ly ) = 33 Ly, ()
A6 - AT £y )
B AIZn _ }\2211 £, ®

as before using the Binet form for the Fibonacci polynomials. Again gm(LZn(X)) is a poly-

nomial when x =1, F_ |F

2n|" 2mn °
Summarizing,
Aa) fon)m® = fons ® £ @ynia®)
(B) £, m® = i, ®e @, ®) .

Using the explicit formulas for the polynomials fn(x) and gn(x), we have

n/2] n/2
¢ G = (n +1- k) S - <n #1 - k) (1) 2K
= k=0

Then, we can combine (A) and (B) into one formula,

f nk(x) = fk(x)

J

n-1- j) (1) DG+ LE—Zj-l(X) .
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This justifies the formula reported by Brother Alfred in [3], Table 41, when x = 3, but, of

course, holds for other x as well.

3. THE LUCAS TRIANGLE

The polynomial sequences Ln(x) and hn(x) for each n havethe same coefficients ex-

cept those of hn(x) alternate in sign. If we call the coefficient array for the Lucas polynom-

ials the Lucas Triangle, then we can get a result similar to that above as reported for Table

42 in [3]. See also [1], [4], [5], and [6]. First,

MLy @) = A7) and NplLy @) = A7
so that
L ( ) +1(x)) - A(2n+1)m() + /\(2n+1)m(x) m(2n+1)(x) .
Next
* 2n *
ALy &) = A7 (x) and ALy ) = 7\2 " (x)
so that

b @, 69) =A™ + 7@ = L, .

2mn

This evidently establishes the counterpart for the Lucas polynomials.
We note in passing that Ly(x) = 2, L) = x, and from

= = x2
Ln+2(x) = n+1(x) + L (x), Lyx) = x* + 2,
Thus the Lon+1 (x) are divisible by x. This also holds for h2n +1(x) .
Thus,
Lom+1Wann®) = Loma)na)®
homi1 Ton®) = Laman) en) ™

implies that L (x) l Lam+1)p x).

Lp (2m-+1)p and F lF for m = 0.
4. SOME OTHER RESULTS
Suppose
fo® =xf & +f &; fox) = 0, fx =1.

Next let x = @, where o2 = a +1; then
fn(a) = a/Pn + Qn .

Here we seek recurrences for the sequences Pn and Qn' Thus

Similarly, fp(x) fmp(x). Setting x =

(x)

1 establishes.



1972] FIBONACCI AND LUCAS TRIANGLES 559

Prig +tQuuy = ®@P 4 +Q ) + @P) +Q))

n+1
and
Pn+2 = Pn+1 * Pn + Qn+1
Qn+2 = Pn+1 * Qn
Pn+1 = Pn + Pn-l * Qn
Pn+3 = Pn+2 * Pn+1 * Qn+2 °
Subtracting
Pot3 " Prat T Prag " P T Phug P Y Qe - Q) -
Thus
Prtz = Prag ¥ 3Ppy - Py - Py
since

iz = U = Ppig o
whose auxiliary polynomial is
xt=x3+3%-x-1.
This agrres with the results in [8].
Now, let A% = xx +1, Then
fn()\) = )\Pn +Qn s

when Pn and Qn are polynomials in 2.

>‘Pn+2 + Qn+2 = )\()\Pn_l_l + Qn+1) + 7\Pn + Q’n
= X)\Pn+1 * 1:’n+1 + AQ‘n+1 * )‘Pn * Qn °
Thus
Pn+2 = XPn+1 * Pn * Qn+1 ?

Qn+2 = Pn+1 * Qn ’

so that, using the same techniques as before, we find

Pn+3 = XPn+2 * 1)n+1 * Q'n+2
Pn+1 = XPn + Pn—l * Qn
Pris ™ Pnan = XPpag * Ppag ~ P - Py 7 (Qn+2 - Qn)
yielding
Ptz = ®Phip T 3Ppyg —XPp - Py

which agrees with Eq. (8), particularly result (iii), in [8].
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[Continued from page 554. ]

SOME THEOREMS ON COMPLETENESS

holds true and Theorem 12 is completed.
Corollary. The hypothesis of Theorem 3 is not a necessary condition. From Theorem
= ZFE[1 for n= 3, m= 4, and that the sequence 2m"1

m . m
7, clearly Fn + copies of Fn

1
is complete.
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