FIBONACCI AND LUCAS TRIANGLES

V. E. HOGGATT, JR., MARJORIE BICKNELL, and ELLEN L. KING San Jose State University, San Jose, California

1. INTRODUCTION

We first define four sequences of polynomials and lay out two fundamental identities. Let
(a)

$$
\mathrm{f}_{0}(\mathrm{x})=0, \quad \mathrm{f}_{1}(\mathrm{x})=1, \quad \text { and } \quad \mathrm{f}_{\mathrm{n}+2}(\mathrm{x})=\mathrm{xf}_{\mathrm{n}+1}(\mathrm{x})+\mathrm{f}_{\mathrm{n}}(\mathrm{x})
$$

These are the Fibonacci polynomials, and $f_{n}(1)=F_{n}$. Let

$$
\begin{equation*}
L_{0}(x)=2, \quad L_{1}(x)=x, \quad \text { and } \quad L_{n+2}(x)=x L_{n+1}(x)+L_{n}(x) \tag{b}
\end{equation*}
$$

which are the Lucas polynomials. It is easy to show that

$$
L_{n}(x)=f_{n+1}(x)+f_{n-1}(x), \quad L_{n}^{2}(x)-\left(x^{2}+4\right) f_{n}^{2}(x)=(-1)^{n} 4, \quad \text { and } \quad L_{n}(1)=L_{n}
$$

These are two well known polynomial sequences which have been much discussed in these pages. Both enjoy Binet forms. Let $\lambda^{2}-\mathrm{x} \lambda-1=0$ have roots

$$
\lambda_{1}=\frac{x+\sqrt{x^{2}+4}}{2} \quad \text { and } \quad \lambda_{2}=\frac{x-\sqrt{x^{2}+4}}{2} .
$$

Then

$$
\begin{gathered}
\mathrm{f}_{\mathrm{n}}(\mathrm{x})=\frac{\lambda_{1}^{\mathrm{n}}-\lambda_{2}^{\mathrm{n}}}{\lambda_{1}-\lambda_{2}} \quad \text { and } \quad \mathrm{L}_{\mathrm{n}}(\mathrm{x})=\lambda_{1}^{\mathrm{n}}+\lambda_{2}^{\mathrm{n}}, \\
\lambda_{1}^{\mathrm{n}}=\frac{\mathrm{L}_{\mathrm{n}}(\mathrm{x})+\sqrt{\mathrm{x}^{2}+4} \mathrm{f}_{\mathrm{n}}(\mathrm{x})}{2} \quad \text { and } \quad \lambda_{2}^{\mathrm{n}}=\frac{\mathrm{L}_{\mathrm{n}}(\mathrm{x})-\sqrt{\mathrm{x}^{2}+4} \mathrm{f}_{\mathrm{n}}(\mathrm{x})}{2}
\end{gathered}
$$

Next we introduce two polynomial sequences closely related to the Chebysheff polynomials of the first and second kind which were introduced in [2]. Let

$$
\begin{aligned}
& \mathrm{g}_{0}(\mathrm{x})=0, \quad \mathrm{~g}_{1}(\mathrm{x})=1, \quad \text { and } \mathrm{g}_{\mathrm{n}+2}(\mathrm{x})=\mathrm{x} \mathrm{~g}_{\mathrm{n}+1}(\mathrm{x})-\mathrm{g}_{\mathrm{n}}(\mathrm{x}), \\
& \mathrm{h}_{0}(\mathrm{x})=2, \quad \mathrm{~h}_{1}(\mathrm{x})=\mathrm{x},
\end{aligned} \text { and } \mathrm{h}_{\mathrm{n}+2}(\mathrm{x})=\mathrm{x} \mathrm{~h}_{\mathrm{n}+1}(\mathrm{x})-\mathrm{h}_{\mathrm{n}}(\mathrm{x}) .
$$

It is easy to establish

$$
h_{n}^{2}(x)-\left(x^{2}-4\right) g_{n}^{2}(x)=4 \quad \text { and } \quad h_{n}(x)=g_{n+1}(x)+g_{n-1}(x)
$$

and if $\lambda^{2}-\mathrm{x} \lambda+1=0$ has roots

$$
\lambda_{1}^{*}(x)=\frac{x+\sqrt{x^{2}-4}}{2} \quad \text { and } \quad \lambda_{2}^{*}(x)=\frac{x-\sqrt{x^{2}-4}}{2}
$$

then, for $x \neq \pm 2$,

$$
\mathrm{g}_{\mathrm{n}}(\mathrm{x})=\frac{\lambda_{1}^{* \mathrm{n}}(\mathrm{x})-\lambda_{2}^{* \mathrm{n}}(\mathrm{x})}{\lambda_{1}^{*}(\mathrm{x})-\lambda_{2}^{*}(\mathrm{x})} \quad \text { and } \quad \mathrm{h}_{\mathrm{n}}(\mathrm{x})=\lambda_{1}^{* \mathrm{n}}(\mathrm{x})+\lambda_{2}^{* \mathrm{n}}(\mathrm{x})
$$

while $g_{n}(2)=n$ and $g_{n}(-2)=-n, n=0,1,2, \cdots$. As with Fibonacci polynomials, $g_{n}(x)$ have their coefficients lying along the rising diagonals of Pascal's triangle.

2. SUBSTITUTIONS INTO POLYNOMIAL SEQUENCES

Consider

$$
\lambda_{1}(x)=\frac{x+\sqrt{x^{2}+4}}{2}
$$

for x replaced by $L_{2 n+1}(x)$. From $L_{n}^{2}(x)-\left(x^{2}+4\right) f_{n}^{2}(x)=4(-1)^{n}$ we see that

$$
\lambda_{1}\left(\mathrm{~L}_{2 \mathrm{n}+1}(\mathrm{x})\right)=\frac{\mathrm{L}_{2 \mathrm{n}+1}(\mathrm{x})+\sqrt{\mathrm{x}^{2}+4} \mathrm{f}_{2 \mathrm{n}+1}(\mathrm{x})}{2}
$$

which from

$$
\lambda_{1}^{\mathrm{n}}(\mathrm{x})=\left[\mathrm{L}_{\mathrm{n}}(\mathrm{x})+\sqrt{\mathrm{x}^{2}+4} \mathrm{f}_{\mathrm{n}}(\mathrm{x})\right] / 2
$$

becomes

$$
\lambda_{1}\left(L_{2 n+1}(x)\right)=\lambda_{1}^{2 n+1}(x)
$$

Similarly,

$$
\lambda_{2}\left(L_{2 n+1}(x)\right)=\lambda_{2}^{2 n+1}(x)
$$

Now let us look at

$$
\begin{aligned}
\mathrm{f}_{\mathrm{m}}\left(\mathrm{~L}_{2 \mathrm{n}+1}(\mathrm{x})\right) & =\frac{\lambda_{1}^{\mathrm{m}}\left(\mathrm{~L}_{2 \mathrm{n}+1}(\mathrm{x})\right)-\lambda_{2}^{\mathrm{m}}\left(\mathrm{~L}_{2 \mathrm{n}+1}(\mathrm{x})\right)}{\lambda_{1}\left(\mathrm{~L}_{2 \mathrm{n}+1}^{(\mathrm{x}))-\lambda_{2}\left(\mathrm{~L}_{2 \mathrm{n}+1}(\mathrm{x})\right)}\right.} \\
& =\frac{\lambda_{1}^{\mathrm{m}(2 \mathrm{n}+1)}(\mathrm{x})-\lambda_{2}^{\mathrm{m}(2 \mathrm{n}+1)}(\mathrm{x})}{\lambda_{1}^{2 \mathrm{n}+1}(\mathrm{x})-\lambda_{2}^{2 \mathrm{n}+1}(\mathrm{x})}=\frac{\mathrm{f}_{\mathrm{m}(2 \mathrm{n}+1)}(\mathrm{x})}{\mathrm{f}_{2 \mathrm{n}+1}(\mathrm{x})}
\end{aligned}
$$

by dividing numerator and denominator by $\lambda_{1}(x)-\lambda_{2}(x)$ and using the Binet form for the Fibonacci polynomials. We note that since the coefficients of both polynomial sequences $f_{n}(x)$
and $L_{n}(x)$ are integers, then $f_{m}\left(L_{2 n+1}(x)\right)$ is a polynomial and $f_{m(2 n+1)}(x) / f_{2 n+1}(x)$ is a polynomial. Letting $x=1$ shows that $F_{2 n+1} \mid F_{m(2 n+1)}$.

If instead we use $L_{2 n}^{2}(x)-4=\left(x^{2}+4\right) f_{2 n}^{2}(x)$, then

$$
\lambda_{1}^{*}(\mathrm{x})=\frac{\mathrm{x}+\sqrt{\mathrm{x}^{2}-4}}{2}, \quad \lambda_{2}^{*}(\mathrm{x})=\frac{\mathrm{x}-\sqrt{\mathrm{x}^{2}-4}}{2}
$$

becomes

$$
\begin{aligned}
& \lambda_{1}^{*}\left(\mathrm{~L}_{2 \mathrm{n}}(\mathrm{x})\right)=\frac{\mathrm{L}_{2 \mathrm{n}}(\mathrm{x})+\sqrt{\mathrm{x}^{2}+4} \mathrm{f}_{2 \mathrm{n}}(\mathrm{x})}{2}=\lambda_{1}^{2 \mathrm{n}}(\mathrm{x}) \\
& \lambda_{2}^{*}\left(\mathrm{~L}_{2 \mathrm{n}}(\mathrm{x})\right)=\frac{\mathrm{L}_{2 \mathrm{n}}(\mathrm{x})-\sqrt{\mathrm{x}^{2}+4} \mathrm{f}_{2 \mathrm{n}}(\mathrm{x})}{2}=\lambda_{2}^{2 \mathrm{n}}(\mathrm{x})
\end{aligned}
$$

so that

$$
\mathrm{g}_{\mathrm{m}}(\mathrm{x})=\frac{\lambda_{1}^{* \mathrm{~m}}(\mathrm{x})-\lambda_{2}^{* \mathrm{~m}}(\mathrm{x})}{\lambda_{1}^{*}(\mathrm{x})-\lambda_{2}^{*}(\mathrm{x})}
$$

becomes, when x is replaced by $L_{2 n}(x)$,

$$
\begin{aligned}
\mathrm{g}_{\mathrm{m}}\left(\mathrm{~L}_{2 \mathrm{n}}(\mathrm{x})\right) & =\frac{\lambda_{1}^{\left.* \mathrm{~m}_{\left(\mathrm{L}_{2 \mathrm{n}}\right.}(\mathrm{x})\right)-\lambda_{2}^{* \mathrm{~m}}\left(\mathrm{~L}_{2 \mathrm{n}}(\mathrm{x})\right)}}{\lambda_{1}^{*}\left(\mathrm{~L}_{2 \mathrm{n}}(\mathrm{x})\right)-\lambda_{2}^{*}\left(\mathrm{~L}_{2 \mathrm{n}}(\mathrm{x})\right)} \\
& =\frac{\lambda_{1}^{2 \mathrm{mn}}(\mathrm{x})-\lambda_{2}^{2 \mathrm{mn}}(\mathrm{x})}{\lambda_{1}^{2 \mathrm{n}}-\lambda_{2}^{2 \mathrm{n}}}=\frac{\mathrm{f}_{2 \mathrm{mn}}(\mathrm{x})}{\mathrm{f}_{2 \mathrm{n}}(\mathrm{x})}
\end{aligned}
$$

as before using the Binet form for the Fibonacci polynomials. Again $g_{m}\left(L_{2 n}(x)\right)$ is a polynomial when $x=1, F_{2 n} \mid F_{2 m n}$.

Summarizing,
(A)
(B)

$$
\begin{aligned}
\mathrm{f}_{(2 \mathrm{n}+1) \mathrm{m}}(\mathrm{x}) & =\mathrm{f}_{2 \mathrm{n}+1}(\mathrm{x}) \mathrm{f}_{\mathrm{m}}\left(\mathrm{~L}_{2 \mathrm{n}+1}(\mathrm{x})\right) \\
\mathrm{f}_{2 \mathrm{~nm}}(\mathrm{x}) & =\mathrm{f}_{2 \mathrm{n}}(\mathrm{x}) \mathrm{g}_{\mathrm{m}}\left(\mathrm{~L}_{2 \mathrm{n}}(\mathrm{x})\right)
\end{aligned}
$$

Using the explicit formulas for the polynomials $f_{n}(x)$ and $g_{n}(x)$, we have

$$
f_{n+1}(x)=\sum_{k=0}^{[n / 2]}(n+1-k) x^{n-2 k}, \quad g_{n+1}(x)=\sum_{k=0}^{[n / 2]}\binom{n+1-k}{k}(-1)^{k} x^{n-2 k}
$$

Then, we can combine (A) and (B) into one formula,

$$
f_{n k}(x)=f_{k}(x) \sum_{j=0}^{[n / 2]}(n-1-j)(-1)^{(k+1)(j+1)} L_{k}^{n-2 j-1}(x)
$$

This justifies the formula reported by Brother Alfred in [3], Table 41, when $\mathrm{x}=3$, but, of course, holds for other x as well.

3. THE LUCAS TRIANGLE

The polynomial sequences $L_{n}(x)$ and $h_{n}(x)$ for each n have the same coefficients except those of $h_{n}(x)$ alternate in sign. If we call the coefficient array for the Lucas polynomials the Lucas Triangle, then we can get a result similar to that above as reported for Table 42 in [3]. See also [1], [4], [5], and [6]. First,

$$
\lambda_{1}\left(L_{2 n+1}(x)\right)=\lambda_{1}^{2 n+1}(x) \quad \text { and } \quad \lambda_{2}\left(L_{2 n+1}(x)\right)=\lambda_{2}^{2 n+1}(x)
$$

so that

$$
\mathrm{L}_{\mathrm{m}}\left(\mathrm{~L}_{2 \mathrm{n}+1}(\mathrm{x})\right)=\lambda_{1}^{(2 \mathrm{n}+1) \mathrm{m}_{(\mathrm{x})}+\lambda_{2}^{(2 \mathrm{n}+1) \mathrm{m}}(\mathrm{x})=\mathrm{L}_{\mathrm{m}(2 \mathrm{n}+1)}(\mathrm{x})}
$$

Next

$$
\lambda_{1}^{*}\left(\mathrm{~L}_{2 \mathrm{n}}(\mathrm{x})\right)=\lambda_{1}^{2 \mathrm{n}}(\mathrm{x}) \quad \text { and } \quad \lambda_{2}^{*}\left(\mathrm{~L}_{2 \mathrm{n}}(\mathrm{x})\right)=\lambda_{2}^{2 \mathrm{n}}(\mathrm{x})
$$

so that

$$
\mathrm{h}_{\mathrm{n}}\left(\mathrm{~L}_{2 \mathrm{n}}(\mathrm{x})\right)=\lambda_{1}^{2 \mathrm{mn}}(\mathrm{x})+\lambda_{2}^{2 \mathrm{mn}}(\mathrm{x})=\mathrm{L}_{2 \mathrm{mn}}(\mathrm{x})
$$

This evidently establishes the counterpart for the Lucas polynomials.
We note in passing that $\mathrm{L}_{0}(\mathrm{x})=2, \mathrm{~L}_{1}(\mathrm{x})=\mathrm{x}$, and from

$$
L_{n+2}(x)=x L_{n+1}(x)+L_{n}(x), \quad L_{2}(x)=x^{2}+2
$$

Thus the $L_{2 n+1}(x)$ are divisible by x. This also holds for $h_{2 n+1}(x)$.
Thus,

$$
\begin{aligned}
\mathrm{L}_{2 \mathrm{~m}+1}\left(\mathrm{~L}_{2 \mathrm{n}+1}(\mathrm{x})\right) & =\mathrm{L}_{(2 \mathrm{~m}+1)(2 \mathrm{n}+1)}(\mathrm{x}) \\
\mathrm{h}_{2 \mathrm{~m}+1}\left(\mathrm{~L}_{2 \mathrm{n}}(\mathrm{x})\right) & =\mathrm{L}_{(2 \mathrm{~m}+1)(2 \mathrm{n})}(\mathrm{x})
\end{aligned}
$$

implies that $L_{p}(x) \mid L_{(2 m+1) p}(x)$. Similarly, $f_{p}(x) \mid f_{m p}(x)$. Setting $x=1$ establishes $L_{p} \mid L_{(2 m+1) p}$ and $F_{p} \mid F_{m p}$ for $m \geq 0$.

4. SOME OTHER RESULTS

Suppose

$$
f_{n+2}(x)=x f_{n+1}(x)+f_{n}(x) ; \quad f_{0}(x)=0, \quad f_{1}(x)=1
$$

Next let $\mathrm{x}=\alpha$, where $\alpha^{2}=\alpha+1$; then

$$
\mathrm{f}_{\mathrm{n}}(\alpha)=\alpha \mathrm{P}_{\mathrm{n}}+\mathrm{Q}_{\mathrm{n}} .
$$

Here we seek recurrences for the sequences P_{n} and Q_{n}. Thus

$$
\alpha \mathrm{P}_{\mathrm{n}+2}+\mathrm{Q}_{\mathrm{n}+2}=\alpha\left(\alpha \mathrm{P}_{\mathrm{n}+1}+\mathrm{Q}_{\mathrm{n}+1}\right)+\left(\alpha \mathrm{P}_{\mathrm{n}}+\mathrm{Q}_{\mathrm{n}}\right)
$$

and

$$
\begin{gathered}
P_{n+2}=P_{n+1}+P_{n}+Q_{n+1} \\
Q_{n+2}=P_{n+1}+Q_{n} \\
P_{n+1}=P_{n}+P_{n-1}+Q_{n} \\
P_{n+3}=P_{n+2}+P_{n+1}+Q_{n+2} .
\end{gathered}
$$

Subtracting

$$
P_{n+3}-P_{n+1}=P_{n+2}-P_{n}+P_{n+1}-P_{n-1}+Q_{n+2}-Q_{n}
$$

Thus

$$
P_{n+3}=P_{n+2}+3 P_{n+1}-P_{n}-P_{n-1}
$$

since

$$
Q_{n+2}-Q_{n}=P_{n+1}
$$

whose auxiliary polynomial is

$$
x^{4}=x^{3}+3 x^{2}-x-1
$$

This agrres with the results in [8].
Now, let $\lambda^{2}=x \lambda+1$. Then

$$
f_{n}(\lambda)=\lambda P_{n}+Q_{n},
$$

when P_{n} and Q_{n} are polynomials in $\lambda_{\text {。 }}$

$$
\begin{aligned}
\lambda P_{n+2}+Q_{n+2} & =\lambda\left(\lambda P_{n+1}+Q_{n+1}\right)+\lambda P_{n}+Q_{n} \\
& =x \lambda P_{n+1}+P_{n+1}+\lambda Q_{n+1}+\lambda P_{n}+Q_{n}
\end{aligned}
$$

Thus

$$
\begin{gathered}
P_{n+2}=x P_{n+1}+P_{n}+Q_{n+1} \\
Q_{n+2}=P_{n+1}+Q_{n}
\end{gathered}
$$

so that, using the same techniques as before, we find

$$
\begin{gathered}
P_{n+3}=x P_{n+2}+P_{n+1}+Q_{n+2} \\
P_{n+1}=x P_{n}+P_{n-1}+Q_{n} \\
P_{n+3}-P_{n+1}=x_{n+2}+P_{n+1}-x P_{n}-P_{n-1}+\left(Q_{n+2}-Q_{n}\right)
\end{gathered}
$$

yielding

$$
P_{n+3}=x P_{n+2}+3 P_{n+1}-x P_{n}-P_{n-1}
$$

which agrees with Eq. (8), particularly result (iii), in [8].

REFERENCES

1. Verner E. Hoggatt, Jr., "An Application of the Lucas Triangle," Fibonacci Quarterly, Vol. 8, No. 4, Oct. 1970, pp. 360-364.
2. Verner E. Hoggatt, Jr., "Fibonacci Numbers and the Generalized Binomial Coefficients," Fibonacci Quarterly, Vol. 5, No. 4, November 1967, pp. 383-400.
3. Brother Alfred Brousseau, Fibonacci and Related Number Theoretic Tables, Fibonacci Association, San Jose State College, San Jose, California, 1972.
4. Ellen L. King, "Some Fibonacci Inverse Trigonometry," Unpublished Master's Thesis, San Jose State College, San Jose State College, San Jose, Calif., July, 1969.
5. Marjorie Bicknell and Verner E. Hoggatt, Jr., "A Primer for the Fibonacci Numbers: Part IX. To Prove: F_{n} Divides F_{nk}," Fibonacci Quarterly, Vol. 9, No. 5, Dec. 1971, pp. 529-536.
6. Mark Feinberg, "Lucas Triangle," Fibonacci Quarterly, Vol. 5, No. 5, Dec. 1967, pp. 486-490.
7. Marjorie Bicknell, "A Primer for the Fibonacci Numbers: Part VII. An Introduction to Fibonacci Polynomials and Their Divisibility Properties," Fibonacci Quarterly, Vol. 8, No. 4, Oct. 1970, pp. 407-420.
8. V. E. Hoggatt, Jr., and D. A. Lind, "Symbolic Substitutions Into Fibonacci Polynomials," Fibonacci Quarterly, Vol. 6, No. 5, Nov. 1968, pp. 55-74.
$\rightarrow \infty$
[Continued from page 554.]

SOME THEOREMS ON COMPLETENESS

holds true and Theorem 12 is completed.
Corollary. The hypothesis of Theorem 3 is not a necessary condition. From Theorem 7 , clearly $F_{n+1}^{m} \leq 2 F_{n}^{m}$ for $n \geq 3, m \geq 4$, and that the sequence 2^{m-1} copies of F_{n}^{m} is complete.

REFERENCES

1. V. E. Hoggatt, Jr., and C. H. King, Problem E-1424, American Math. Monthly, Problem p. 593, Vol. 67, June-July 1960.
2. John L. Brown, Jr., "Note on Complete Sequences," American Math. Monthly, Vol. 68, June-July 1961, pp. 557-561.
3. W. Sierpiñski, Theory of Numbers, 1964, p. 137.
4. John L. Brown, Jr., "A Generalization of Semi-Completeness for Integer Sequences," Fibonacci Quarterly, Vol. 1, No. 1 (1963), pp. 3-15.
5. Roger O'Connell, Unpublished thesis, San Jose State College, San Jose, Calif., Jan. 1970, p. 115.
6. Roger O'Connell, "Representation of Integers as Sums of Fibonacci Squares," Fibonacci Quarterly, Vol. 10, No. 1 (1972), pp. 103-112.
