SPECIAL CASES OF FIBONACCI PERIODICITY

JUDY KRAMER and VERNER E. HOGGATT, JR.

 San Jose State University, San Jose, California
1. INTRODUCTION

This paper will deal with the periodicity of Fibonacci sequences; where the Fibonacci sequence $\left\{F_{n}\right\}_{n=0}^{\infty}$ is defined with $F_{0}=0, F_{1}=1$, and $F_{n+2}=F_{n+1}+F_{n}$; the Lucas sequence

$$
\left\{L_{n}\right\}_{n=0}^{\infty}
$$

is defined with $L_{0}=2, L_{1}=1$, and $L_{n+2}=L_{n+1}+L_{n}$; and the generalized Fibonacci sequence $\left\{H_{n}\right\}_{n=0}^{\infty}$ has any two starting values with $H_{n+2}=H_{n+1}+H_{n}$. We will see that in one case, that of modulo 2^{n}, all generalized Fibonacci sequences will have the same period. In a second case, that of modulo 5^{n}, different sequences will have different periods. We will also consider the periods modulo 10^{n}. In each case except that of 10^{n}, the method of proof will be to show that with sequence $\left\{A_{n}\right\}$, modulus m, and period p, then $A_{n+p} \equiv$ $A_{n}(\bmod m)$ and $A_{n+1+p} \equiv A_{n+1}(\bmod m)$. Identities in the proof may be found in [1].

2. THE FIBONACCI CASE MOD $2^{\text {n }}$

Theorem 1. The period of the Fibonacci sequence modulo 2^{n} is 3.2^{n-1}. We will prove that: (A) $\mathrm{F}_{3 \cdot 2^{\mathrm{n}-1}} \equiv \mathrm{~F}_{0}\left(\bmod 2^{\mathrm{n}}\right)$ and (B) $\mathrm{F}_{3 \cdot 2^{\mathrm{n}-1}+1} \equiv \mathrm{~F}_{1}\left(\bmod 2^{\mathrm{n}}\right)$.
A. The proof is by induction.
(1) When $\mathrm{n}=1, \quad \mathrm{~F}_{3.2^{\ell-1}}=\mathrm{F}_{3}=2 \equiv 0\left(\bmod 2^{\ell}\right)$.
(2) Suppose
$\mathrm{F}_{3 \cdot 2^{\mathrm{k}-1}} \equiv 0\left(\bmod 2^{\mathrm{k}}\right)$ 。
(3) Now,
from the identity
$\mathrm{F}_{3 \cdot 2^{\mathrm{k}}}=\mathrm{F}_{3 \cdot 2^{\mathrm{k}-1}} \mathrm{~L}_{3 \cdot 2^{\mathrm{k}-1}}$
$\mathrm{F}_{2 \mathrm{n}}=\mathrm{F}_{\mathrm{n}} \mathrm{L}_{\mathrm{n}}$.
(4) We claim

$$
\mathrm{L}_{3 \mathrm{k}} \equiv 0(\bmod 2)
$$

The proof is by induction.
(5) When $\mathrm{k}=1, \quad \mathrm{~L}_{3 \cdot 1}=4 \equiv 0(\bmod 2)$.
(6) Suppose $\mathrm{L}_{3 \mathrm{~m}} \equiv 0(\bmod 2)$.
(7) $\quad \mathrm{L}_{3(\mathrm{~m}+1)}=2 \mathrm{~L}_{3 \mathrm{~m}+1}+\mathrm{L}_{3 \mathrm{~m}} \equiv 0(\bmod 2)$
and statement (4) is established.
Using (3), with the induction hypothesis (2), and (4), it follows that

$$
\begin{equation*}
\mathrm{F}_{3 \cdot 2^{\mathrm{k}}} \equiv 0\left(\bmod 2^{\mathrm{k}+1}\right) \tag{8}
\end{equation*}
$$

and Part A is proved.
B. (9) First, $\quad \mathrm{F}_{3 \cdot 2^{\mathrm{n}-1}+1}=\left(\mathrm{F}_{3 \cdot 2^{\mathrm{n}-2+1}}\right)^{2}+\left(\mathrm{F}_{3 \cdot 2^{\mathrm{n}-2}}\right)^{2}$ using the identity $F_{m+n+1}=F_{m+1} F_{n+1}+F_{m} F_{n}$. Now, since $F_{3 \cdot 2} n-1 \equiv 0$ $\left(\bmod 2^{\mathrm{n}-1}\right)$ from Part A , it follows that
(11) Also

$$
\begin{equation*}
\left(\mathbb{F}_{3 \cdot 2^{\mathrm{n}-2}}\right)^{2} \equiv 0\left(\bmod 2^{\mathrm{n}}\right) \tag{10}
\end{equation*}
$$

from the identity ${\underset{\mathrm{F}}{\mathrm{n}+1}}^{3 \cdot 2^{n}-2_{n-1}}-\mathrm{F}_{\mathrm{n}}^{2}=(-1)^{\mathrm{n}}$ and (10).
Part B follows from these three steps.

3. THE GENERAL FIBONACCI CASE MOD $2^{\text {n }}$

Theorem 2. The period of any generalized Fibonacci sequence modulo 2^{n} is $3 \cdot 2^{n-1}$. We will prove that: (A) $\mathrm{H}_{3 \cdot 2^{\mathrm{n}-1}+1} \equiv \mathrm{H}_{1}\left(\bmod 2^{\mathrm{n}}\right)$ and (B) $\mathrm{H}_{3 \cdot 2^{\mathrm{n}-1+2}} \equiv \mathrm{H}_{2}\left(\bmod 2_{\mathrm{n}}^{\mathrm{n}}\right)$.
A. We will have to consider three cases.

Case 1: $\mathrm{n}=1 . \quad \mathrm{H}_{3} \cdot 2^{1-1_{+1}}=\mathrm{H}_{4}=2 \mathrm{H}_{2}+\mathrm{H}_{1} \equiv \mathrm{H}_{1}\left(\bmod 2^{1}\right)$.
Case 2: $\mathrm{n}=2 . \quad \mathrm{H}_{3 \cdot 2^{2-1}+1}=\mathrm{H}_{7}=3 \mathrm{H}_{2}+5 \mathrm{H}_{1} \equiv \mathrm{H}_{1}\left(\bmod 2^{2}\right)$.
Case 3: $\mathrm{n}>2$.
(12) First, $H_{3 \cdot 2^{n-1+1}}=H_{3 \cdot 2^{n-2}}{ }_{+1} F_{3.2^{n-2}+1}+H_{3 \cdot 2^{n-2}}{ }^{\mathrm{F}} 3 \cdot 2^{n-2}$, from the identity $H_{m+n+1}=H_{m+1} F_{n+1}+H_{m} F_{n}$.
(13) We need the fact that $\mathrm{F}_{3 \cdot 2^{n-2}} \equiv 0\left(\bmod 2^{\mathrm{n}}\right)$ for $\mathrm{n}>2$, which can be proved by induction in the manner of the proof of 1-A.
(14) Next we claim $\mathrm{H}_{3 \cdot 2^{\mathrm{n}-2}{ }^{\mathrm{F}} 3 \cdot 2^{\mathrm{n}-2+1}} \equiv \mathrm{H}_{1}\left(\bmod 2^{\mathrm{n}}\right)$ for $\mathrm{n}>2$. Since $H_{n+1}=H_{1} F_{n-1}+H_{2} F_{n}$, we can multiply both sides by F_{n+1}
(15) so
$\mathrm{H}_{3 \cdot 2^{\mathrm{n}-2+1}} \mathrm{~F}_{3 \cdot 2^{\mathrm{n}-2+1}}=\mathrm{H}_{1} \mathrm{~F}_{3 \cdot 2^{\mathrm{n}-2-1}} \mathrm{~F}_{3 \cdot 2^{\mathrm{n}-2}{ }_{+1}}$

$$
+\mathrm{H}_{2} \mathrm{~F}_{3 \cdot 2^{\mathrm{n}-2^{2}} \mathrm{~F}_{3 \cdot 2^{\mathrm{n}-2}+1} .}
$$

(16) Now, $\quad \mathrm{F}_{3 \cdot 2^{\mathrm{n}-2}-1} \mathrm{~F}_{3 \cdot 2^{\mathrm{n}-2}+1} \equiv 1\left(\bmod 2^{\mathrm{n}}\right) \quad \mathrm{n}>2$
using the identity $\mathrm{F}_{\mathrm{n}+1} \mathrm{~F}_{\mathrm{n}-1}-\mathrm{F}_{\mathrm{n}}^{2}=(-1)^{\mathrm{n}}$ and (13).
Our claim in (14) follows from (15), (16), and (13) and Case 3 follows from (12), (13), and (16).
B. (17) First, $\mathrm{H}_{3 \cdot 2^{\mathrm{n}-1}+2}=\mathrm{H}_{1} \mathrm{~F}_{3 \cdot 2^{\mathrm{n}-1}}+\mathrm{H}_{2} \mathrm{~F}_{3 \cdot 2^{\mathrm{n}-1}+1}$ from the identity $\mathrm{H}_{\mathrm{n}+2}=\mathrm{H}_{1} \mathrm{~F}_{\mathrm{n}}+\mathrm{F}_{2} \mathrm{~F}_{\mathrm{n}+1}$. Since $F_{3.2^{n-1}} \equiv 1\left(\bmod 2^{n}\right)$ from $1-A$, and $F_{3 \cdot 2^{n-1}+1} \equiv 1\left(\bmod 2^{n}\right)$ from $1-B$, Part B follows immediately.
One of the key parts in the proof of Theorem 1 is being able to write $\mathrm{F}_{3.2^{\mathrm{k}}}$ in terms of $F_{3 \cdot 2^{k-1}}$ as in statement (3). For the next theorem, an analogous result is needed for $\mathrm{F}_{5 \mathrm{n}+1}$ in terms of $\mathrm{F}_{5 \mathrm{n}}$.

4. THE FIBONACCI CASE MOD 5^{n}

We need a simple lemma.
Lemma. $\quad F_{5 n+1}=F_{5^{n}}\left(L_{4.5 n}-L_{2.5 n}+1\right), \quad n=1,2, \cdots$.
Proof. We will use the Binet forms

$$
\mathrm{F}_{\mathrm{n}}=\frac{\alpha^{\mathrm{n}}-\beta^{\mathrm{n}}}{\alpha-\beta} \quad \text { and } \quad \mathrm{L}_{\mathrm{n}}=\alpha^{\mathrm{n}}+\beta^{\mathrm{n}},
$$

where

$$
\alpha=\frac{1+\sqrt{5}}{2} \quad \text { and } \quad \beta=\frac{1-\sqrt{5}}{2}
$$

Note that $\alpha \beta=-1$.

$$
\begin{aligned}
\mathrm{F}_{5^{\mathrm{n}+1}} & =\frac{\alpha^{5^{\mathrm{n}+1}}-\beta^{5^{\mathrm{n}+1}}}{\alpha-\beta}=\frac{\alpha^{5^{\mathrm{n}} \cdot 5}-\beta^{5^{\mathrm{n}} \cdot 5}}{\alpha-\beta} \\
& =\frac{\left(\alpha^{5^{\mathrm{n}}}-\beta^{5^{\mathrm{n}}}\right)}{\alpha-\beta}\left(\alpha^{5^{\mathrm{n}} \cdot 4}+\alpha^{5^{\mathrm{n}} \cdot 3} \beta_{\beta^{5^{\mathrm{n}}}}^{\left.\alpha-\alpha^{5^{\mathrm{n}} \cdot 2}+\beta^{5^{\mathrm{n}} \cdot 2}+\alpha^{5^{\mathrm{n}}} \beta^{5^{\mathrm{n}} \cdot 3}+\beta^{5^{\mathrm{n}} \cdot 4}\right)}\right. \\
& =\frac{\left(\alpha^{5^{\mathrm{n}}}-\beta^{5^{\mathrm{n}}}\right)}{\alpha-\beta}\left[\alpha^{5^{\mathrm{n}} \cdot 4}+\beta^{5^{\mathrm{n}} \cdot 4}+(\alpha \beta)^{\left.5^{\mathrm{n}}\left(\alpha^{5^{\mathrm{n}} \cdot 2}+\beta^{5^{\mathrm{n}} \cdot 2}\right)+(\alpha \beta)^{5^{\mathrm{n}} \cdot 2}\right]}\right. \\
& \left.=\mathrm{F}_{5^{\mathrm{n}^{(L}}{ }_{5}{ }^{\mathrm{n}} \cdot 4-\mathrm{L}{ }_{5} \mathrm{n} \cdot 2}+1\right)
\end{aligned}
$$

Theorem 3. The period of the Fibonacci numbers modulo 5^{n} is 4.5^{n}.
Proof. We will prove that: (A) $\mathrm{F}_{4.5 \mathrm{n}} \equiv \mathrm{F}_{0}\left(\bmod 5^{\mathrm{n}}\right)$ and (B) $\mathrm{F}_{4.5^{n}+1} \equiv \mathrm{~F}_{1}\left(\bmod 5^{\mathrm{n}}\right)$.

The proof is by induction.
(20) When $\mathrm{n}=1, \quad \mathrm{~F}_{5^{1}} \equiv \mathrm{~F}_{5}=5 \equiv 0\left(\bmod 5^{1}\right)$.
(21) Suppose $\quad F_{5^{k}} \equiv 0 \quad\left(\bmod 5^{k}\right)$.
(22) Now, $\mathrm{F}_{5^{\mathrm{k}+1}}=\mathrm{F}_{5^{\mathrm{k}}}\left(\mathrm{L}_{4 \cdot 5^{\mathrm{k}}}-\mathrm{L}_{2 \cdot 5^{\mathrm{k}}}+1\right)$ from the Lemma.
(23)
from the identity $\mathrm{L}_{4 \mathrm{n}}-2=5 \mathrm{~F}_{2 \mathrm{n}}^{2}$,
(24) and

$$
\mathrm{L}_{2 \cdot 5} \mathrm{k} \equiv-2 \quad(\bmod 5)
$$

from the identity $L_{2(2 n+1)}+2=5 \mathrm{~F}_{2 n+1}^{2}$.
Using the induction hypothesis (21), with (22), (23), and (24),

$$
\begin{equation*}
\mathrm{F}_{5^{\mathrm{k}+1}} \equiv 0\left(\bmod 5^{\mathrm{k}+1}\right) \tag{25}
\end{equation*}
$$

and Part A follows.
B. (26) First

$$
F_{4 \cdot 5^{n}+1}=\left(F_{2 \cdot 5} n_{+1}\right)^{2}+\left(F_{2 \cdot 5}\right)^{2}
$$

using the identity $\mathrm{F}_{\mathrm{m}+\mathrm{n}+1}=\mathrm{F}_{\mathrm{m}+1} \mathrm{~F}_{\mathrm{n}+1}+\mathrm{F}_{\mathrm{m}} \mathrm{F}_{\mathrm{n}}$.
From (19) it follows that
(28) Also

$$
\begin{gather*}
\left(\mathrm{F}_{2 \cdot 5}\right)^{2} \equiv 0 \quad\left(\bmod 5^{\mathrm{n}}\right) . \tag{27}\\
\left(\mathrm{F}_{2 \cdot 5^{\mathrm{n}_{+1}}}\right)^{2} \equiv 1 \quad\left(\bmod 5^{\mathrm{n}}\right)
\end{gather*}
$$

using the identity ${\underset{F}{n+1}} F_{n-1}-F_{n}^{2}=(-1)^{n}$ and (27).
Consequently Part B is proved.

5. THE LUCAS CASE MOD 5^{n}

Theorem 4. The period of the Lucas numbers modulo 5^{n} is 4.5^{n-1}.
Proof. We will prove that: (A) $\mathrm{L}_{4.5^{\mathrm{n}-1}} \equiv \mathrm{~L}_{0}\left(\bmod 5^{\mathrm{n}}\right)$ and (B) $\mathrm{L}_{4.5^{\mathrm{n}-1}+1} \equiv \mathrm{~L}_{1}(\bmod$ 5^{n} 。
A. (29) First

$$
\mathrm{L}_{4 \cdot 5^{\mathrm{n}}-1}=5\left(\mathrm{~F}_{2 \cdot 5^{\mathrm{n}-1}}\right)^{2}+2
$$

from the identity $\quad L_{4 n}-2=5 F_{2 n}^{2}$. From (19) it can be shown that
(31) So

$$
\begin{gather*}
\left(\mathrm{F}_{2 \cdot 5^{\mathrm{n}-1}}\right)^{2} \equiv 0 \quad\left(\bmod 5^{\mathrm{n}-1}\right) \tag{30}\\
5\left(\mathrm{~F}_{2 \cdot 5^{\mathrm{n}-1}}\right)^{2} \equiv 0 \quad\left(\bmod 5^{\mathrm{n}}\right)
\end{gather*}
$$

and Part A is proved.
B. (32) First

$$
\mathrm{L}_{4.5^{\mathrm{n}+1}+2}=5\left(\mathrm{~F} 2.5^{\mathrm{n}-1_{+1}}\right)^{2}-2
$$ from the identity $\quad L_{4 n+2}=5 F_{2 n+1}^{2}-2$.

(33) In a method similar to that used in showing (28), it can be shown that
(34) Therefore

$$
\left(\mathrm{F}_{2 \cdot 5^{\mathrm{n}-1}+1}\right)^{2} \equiv 1\left(\bmod 5^{\mathrm{n}}\right)
$$

$L_{4.5^{\mathrm{n}-1}{ }_{+2}} \equiv 3\left(\bmod 5^{\mathrm{n}}\right)$
(35) From A and (34), $\mathrm{L}_{4 \cdot 5^{\mathrm{n}-1_{+2}}}-\mathrm{L}_{4 \cdot 5^{\mathrm{n}-1}} \equiv 1\left(\bmod 5^{\mathrm{n}}\right)$
(36) $\quad L_{4.5^{n-1}} \equiv 1(\bmod 5 n)$ since $L_{n+2}=L_{n+1}+L_{n}$.

As shown in [2], the periods of the Fibonacci sequences modulo 10^{n} will be the least common multiple of the periods mod 2^{n} and $\bmod 5^{\mathrm{n}}$. A summary of the periods is below.

Sequence	$\bmod 2^{\mathrm{n}}$ $\mathrm{n}=1,2, \cdots$	$\bmod 5^{\mathrm{n}}$ $\mathrm{n}=1,2, \cdots$	$\bmod 10$	$\bmod 100$	$\bmod 10^{\mathrm{n}}$ $\mathrm{n}=3,4, \cdots$
Fibonacci $\left\{\mathrm{F}_{\mathrm{n}}\right\}$	$3 \cdot 2^{\mathrm{n}-1}$	$4 \cdot 5^{\mathrm{n}}$	60	300	$15 \cdot 10^{\mathrm{n}-1}$
Lucas $\left\{\mathrm{L}_{\mathrm{n}}\right\}$	$3 \cdot 2^{\mathrm{n}-1}$	$4 \cdot 5^{\mathrm{n}-1}$	12	60	$3 \cdot 10^{\mathrm{n}-1}$
Generalized Fibonacci $\left\{\mathrm{H}_{\mathrm{n}}\right\}$	$3 \cdot 2^{\mathrm{n}-1}$	variable	variable	variable	variable

6. SOME PARTING OBSERVATIONS

We note in passing that we have found some solutions to n / F_{n} in the statement $F_{5^{n}} \equiv 0$ $\bmod 5^{n}$. To this we add two statements also involving solutions to $L_{n} \equiv 0 \bmod n$.

| Theorem: | $\mathrm{L}_{\mathrm{n}} \equiv 1 \quad \bmod \mathrm{n} \quad$ for n a prime. |
| :--- | :--- | :--- |
| Theorem: | $\mathrm{L}_{2} \cdot 3^{\mathrm{k}} \equiv 0 \bmod 2 \cdot 3^{\mathrm{k}}, \quad \mathrm{k}=1,2,3, \ldots$ |
| Theorem: | $\mathrm{F} 2^{2} \cdot 3^{\mathrm{k}} \equiv 0 \bmod 2^{2} \cdot 3^{\mathrm{k}}, \quad \mathrm{k}=1,2,3, \cdots$ |

A new paper by Hoggatt and Bicknell will further discuss these ideas.

REFERENCES

1. V. E. Hoggatt, Jr., Fibonacci and Lucas Numbers, Houghton Mifflin, Boston, 1969.
2. D. D. Wall, "Fibonacci Series Modulo m,"American Mathematical Monthly, Vol. 67 June-July 1960, pp. 525-532.
3. V. E. Hoggatt, Jr., "A Type of Periodicity for Fibonacci Numbers," Math. Magazine, Jan.-Feb. 1955, p. 139.
4. Frederick Gebhardt, "Generating Pseudo-Random Numbers by Shuffling a Fibonacci Sequence, " Mathematics of Computation, Oct. 1967, pp. 708-709.
[Continued on page 530.]
