SPECIAL CASES OF FIBONACCI PERIODICITY

JUDY KRAMER and VERNER E. HOGGATT, JR. San Jose State University, San Jose, California

1. INTRODUCTION

This paper will deal with the periodicity of Fibonacci sequences; where the Fibonacci sequence $\left\{ {{\rm F}_n } \right\}_{n = 0}^\infty$ is defined with ${\rm F_0}$ = 0, ${\rm F_1}$ = 1, and ${\rm F_{n+2}}$ = ${\rm F_{n+1}}$ + ${\rm F_n}$; the Lucas sequence

$$\left\{ L_{n}^{n}\right\} _{n=1}^{\infty}$$

is defined with $L_0 = 2$, $L_1 = 1$, and $L_{n+2} = L_{n+1} + L_n$; and the generalized Fibonacci sequence $\{H_n\}_{n=0}^{\infty}$ has any two starting values with $H_{n+2} = H_{n+1} + H_n$. We will see that in one case, that of modulo 2^n , all generalized Fibonacci sequences will have the same period. In a second case, that of modulo 5^n , different sequences will have different periods. We will also consider the periods modulo 10^n . In each case except that of 10^n , the method of proof will be to show that with sequence $\{A_n\}$, modulus m, and period p, then $A_{n+p} = A_n$ (mod m) and $A_{n+1+p} = A_{n+1}$ (mod m). Identities in the proof may be found in [1].

2. THE FIBONACCI CASE MOD 2ⁿ

<u>Theorem 1.</u> The period of the Fibonacci sequence modulo 2^n is $3 \cdot 2^{n-1}$. We will prove that: (A) $F_{3 \cdot 2^{n-1}} \equiv F_0 \pmod{2^n}$ and (B) $F_{3 \cdot 2^{n-1}+1} \equiv F_1 \pmod{2^n}$.

A. The proof is by induction.

- (1) When n = 1, $F_{3,2\ell-1} = F_3 = 2 \equiv 0 \pmod{2^\ell}$.
- (2) Suppose $F_{3,0k-1} \equiv 0 \pmod{2^k}$.
- (3) Now, $F_{3\cdot 2^k} = F_{3\cdot 2^{k-1}} L_{3\cdot 2^{k-1}}$ from the identity $F_{2n} = F_n L_n$.
- (4) We claim $L_{3k} \equiv 0 \pmod{2}$. The proof is by induction.
- (5) When k = 1, $L_{3,1} = 4 \equiv 0 \pmod{2}$.
- (6) Suppose $L_{3m} \equiv 0 \pmod{2}$.

(7)
$$L_{3(m+1)} = 2L_{3m+1} + L_{3m} \equiv 0 \pmod{2}$$

and statement (4) is established.

Using (3), with the induction hypothesis (2), and (4), it follows that

(8) $F_{3\cdot 2^k} \equiv 0 \pmod{2^{k+1}}$ and Part A is proved.

B. (9) First,
$$F_{3\cdot 2n-1+1} = (F_{3\cdot 2n-2+1})^2 + (F_{3\cdot 2n-2})^2$$

using the identity $F_{m+n+1} = F_{m+1}F_{n+1} + F_mF_n$. Now, since $F_{3\cdot 2n-1} \equiv 0$
(mod 2^{n-1}) from Part A, it follows that

SPECIAL CASES OF FIBONACCI PERIODICITY

(10)
$$(\mathbb{F}_{3\cdot 2^{n-2}})^2 \equiv 0 \pmod{2^n}$$
.
(11) Also $(\mathbb{F}_{n-2})^2 \equiv 1 \pmod{2^n}$

Also $(F_{3\cdot 2}^{n-2}+1)^2 \equiv 1 \pmod{2^n}$ from the identity $F_{n+1}^{n-2}F_{n-1}^2 - F_n^2 = (-1)^n$ and (10). Part B follows from these three steps.

3. THE GENERAL FIBONACCI CASE MOD 2ⁿ

<u>Theorem 2.</u> The period of any generalized Fibonacci sequence modulo 2^n is $3 \cdot 2^{n-1}$. We will prove that: (A) $H_{3\cdot 2^{n-1}+1} \equiv H_1 \pmod{2^n}$ and (B) $H_{3\cdot 2^{n-1}+2} \equiv H_2 \pmod{2^n}$. A. We will have to consider three cases.

> Case 1: n = 1. $H_{3, 2^{1-1}+1} = H_4 = 2H_2 + H_1 = H_1 \pmod{2^1}$. Case 2: n = 2. $H_{3,2}^2 - 1_{+1} = H_7 = 3H_2 + 5H_1 \equiv H_1 \pmod{2^2}$. Case 3: n > 2.

- $\mathbf{H}_{3\cdot 2^{n-1}+1} = \mathbf{H}_{3\cdot 2^{n-2}+1}\mathbf{F}_{3\cdot 2^{n-2}+1} + \mathbf{H}_{3\cdot 2^{n-2}}\mathbf{F}_{3\cdot 2^{n-2}},$ (12) First, from the identity $H_{m+n+1} = H_{m+1}F_{n+1} + H_mF_n$. (13) We need the fact that $F_{3\cdot 2n-2} \equiv 0 \pmod{2^n}$ for $n \ge 2$, which can be
- proved by induction in the manner of the proof of 1-A.
- (14) Next we claim $H_{3\cdot 2^{n-2}}F_{3\cdot 2^{n-2}+1} \equiv H_1 \pmod{2^n}$ for $n \ge 2$. Since $H_{n+1} = H_1 F_{n-1} + H_2 F_n$, we can multiply both sides by F_{n+1}

(15) so
$$H_{3\cdot 2^{n-2}+1}F_{3\cdot 2^{n-2}+1} = H_1F_{3\cdot 2^{n-2}-1}F_{3\cdot 2^{n-2}+1} + H_2F_{3\cdot 2^{n-2}}F_{3\cdot 2^{n-2}+1}$$
.

Now, $F_{3\cdot 2^{n-2}-1}F_{3\cdot 2^{n-2}+1} \equiv 1 \pmod{2^n}$ $n \ge 2$ using the identity $F_{n+1}F_{n-1} - F_n^2 \equiv (-1)^n$ and (13). (16) Now,

Our claim in (14) follows from (15), (16), and (13) and Case 3 follows from (12), (13), and (16).

в. (17) First, $H_{3\cdot 2^{n-1}+2} = H_1F_{3\cdot 2^{n-1}} + H_2F_{3\cdot 2^{n-1}+1}$ from the identity $H_{n+2} = H_1F_n + F_2F_{n+1}$. Since $F_{3,2^{n-1}} \equiv 1 \pmod{2^n}$ from 1-A, and $F_{3\cdot2^{n-1}+1} \equiv 1 \pmod{2^n}$ from 1-B, Part B follows immediately.

One of the key parts in the proof of Theorem 1 is being able to write $F_{3\cdot 2^k}$ in terms of $F_{3,2k-1}$ as in statement (3). For the next theorem, an analogous result is needed for F_{5n+1} in terms of F_{5n} .

4. The fibonacci case mod 5^n

We need a simple lemma.

Lemma. $F_{5n+1} = F_{5n} (L_{4\cdot 5n} - L_{2\cdot 5n} + 1), n = 1, 2, \cdots$ Proof. We will use the Binet forms

$$F_n = \frac{\alpha^n - \beta^n}{\alpha - \beta}$$
 and $L_n = \alpha^n + \beta^n$,

where

520

Note that $\alpha\beta = -1$.

$$\begin{aligned} \mathbf{F}_{5^{n+1}} &= \frac{\alpha^{5^{n+1}} - \beta^{5^{n+1}}}{\alpha - \beta} = \frac{\alpha^{5^{n} \cdot 5} - \beta^{5^{n} \cdot 5}}{\alpha - \beta} \\ &= \frac{(\alpha^{5^{n}} - \beta^{5^{n}})}{\alpha - \beta} (\alpha^{5^{n} \cdot 4} + \alpha^{5^{n} \cdot 3} \beta^{5^{n}} + \alpha^{5^{n} \cdot 2} + \beta^{5^{n} \cdot 2} + \alpha^{5^{n}} \beta^{5^{n} \cdot 3} + \beta^{5^{n} \cdot 4}) \\ &= \frac{(\alpha^{5^{n}} - \beta^{5^{n}})}{\alpha - \beta} [\alpha^{5^{n} \cdot 4} + \beta^{5^{n} \cdot 4} + (\alpha\beta)^{5^{n}} (\alpha^{5^{n} \cdot 2} + \beta^{5^{n} \cdot 2}) + (\alpha\beta)^{5^{n} \cdot 2}] \\ &= \mathbf{F}_{5^{n}} (\mathbf{L}_{5^{n} \cdot 4} - \mathbf{L}_{5^{n} \cdot 2} + 1) \quad . \end{aligned}$$

 $\alpha = \frac{1 + \sqrt{5}}{2}$ and $\beta = \frac{1 - \sqrt{5}}{2}$.

Theorem 3. The period of the Fibonacci numbers modulo 5^n is $4 \cdot 5^n$. Proof. We will prove that: (A) $F_{4,5^n} \equiv F_0 \pmod{5^n}$ and (B) $F_{4,5^{n+1}} \equiv F_1 \pmod{5^n}$. $F_{4\cdot5^{n}}^{4\cdot5^{n}} \equiv F_{5^{n}} \pmod{5^{n}}$ $F_{5^{n}} \equiv 0 \pmod{5^{n}}.$ A. (18) Since $F_n | F_{kn}$, (19) Next we claim The proof is by induction. $\begin{aligned} \mathbf{F}_{5^1} &\equiv \mathbf{F}_5 &= 5 \equiv 0 \pmod{5^1}, \\ \mathbf{F}_{5^k} &\equiv 0 \pmod{5^k}. \end{aligned}$ (20) When n = 1, (21) Suppose (22) Now, $F_{5k+1} = F_{5k} (L_{4\cdot 5k} - L_{2\cdot 5k} + 1)$ from the Lemma. (23) $L_{4\cdot 5k} \equiv 2 \pmod{5}$ from the identity $L_{4n} - 2 = 5F_{2n}^2$, (24) and $L_{2\cdot 5k} \equiv -2 \pmod{5}$ from the identity $L_{2(2n+1)}^{2(3n+1)} + 2 = 5F_{2n+1}^2$. $F_{5k+1} \equiv 0 \pmod{5^{k+1}}$ and Part A follows. Using the induction hypothesis (21), with (22), (23), and (24), (25)First $F_{4\cdot 5^{n}+1} = (F_{2\cdot 5^{n}+1})^{2} + (F_{2\cdot 5^{n}})^{2}$ using the identity $F_{m+n+1} = F_{m+1}F_{n+1} + F_{m}F_{n}$. B. (26) First From (19) it follows that $\begin{array}{c} (F_{2 \cdot 5^n})^2 \equiv 0 \pmod{5^n} \ . \\ \text{Also} \qquad (F_{2 \cdot 5^{n} + 1})^2 \equiv 1 \pmod{5^n} \\ \text{using the identity} \qquad F_{n+1}F_{n-1} - F_n^2 \equiv (-1)^n \end{array}$ (27)(28) Also and (27). Consequently Part B is proved.

5. THE LUCAS CASE MOD 5ⁿ

 $\begin{array}{c} \underline{\text{Theorem 4.}} & \text{The period of the Lucas numbers modulo } 5^n \text{ is } 4\cdot 5^{n-1}.\\ \underline{\text{Proof.}} & \text{We will prove that: (A) } L_{4\cdot 5^{n-1}} \equiv L_0 \pmod{5^n} \text{ and (B) } L_{4\cdot 5^{n-1}+1} \equiv L_1 \pmod{5^n}. \end{array}$

1972]

SPECIAL CASES OF FIBONACCI PERIODICITY

First $L_{4\cdot 5^{n-1}} = 5(F_{2\cdot 5^{n-1}})^2 + 2$ from the identity $L_{4n} - 2 = 5F_{2n}^2$. A. (29) First From (19) it can be shown that $(\mathbf{F}_{2 \cdot 5^{n-1}})^2 \equiv 0 \pmod{5^{n-1}}.$ So $5(\mathbf{F}_{2 \cdot 5^{n-1}})^2 \equiv 0 \pmod{5^n}$ and Part A is proved. (30)(31) So First $L_{4.5n+1+2} = 5(F_{2.5n-1+1})^2 - 2$ from the identity $L_{4n+2} = 5F_{2n+1}^2 - 2$. (32) First в. (33) In a method similar to that used in showing (28), it can be shown that $(F_{2 \cdot 5^{n-1}+1})^2 \equiv 1 \pmod{5^n}.$ (34) Therefore $L_{4 \cdot 5^{n-1}+2} \equiv 3 \pmod{5^n}.$ (35) From A and (34), $L_{4 \cdot 5^{n-1}+2} = 1 \pmod{5^n}$ (36) $L_{4 \cdot 5^{n-1}+1} \equiv 1 \pmod{5^n} \text{ since } L_{n+2} = L_{n+1} + L_n.$ As shown in [2], the periods of the Fibonacci sequences modulo 10^n will be the least

common multiple of the periods mod 2^n and mod 5^n . A summary of the periods is below.

Sequence	$ \begin{array}{c} \mod 2^n \\ n = 1, 2, \cdots \end{array} $	$ \begin{array}{c} \mod 5^n \\ n = 1, 2, \cdots \end{array} $	mod 10	mod 100	$\begin{array}{c} \mod 10^n \\ n = 3, 4, \cdots \end{array}$
Fibonacci $\{F_n\}$	3•2 ⁿ⁻¹	4•5 ⁿ	60	300	15.10^{n-1}
Lucas $\{L_n\}$	3•2 ⁿ⁻¹	4.5^{n-1}	12	60	$3 \cdot 10^{n-1}$
$\begin{array}{c} \text{Generalized} \\ \text{Fibonacci } \left\{ \textbf{H}_{n} \right\} \end{array}$	3•2 ⁿ⁻¹	variable	variable	variable	variable

6. SOME PARTING OBSERVATIONS

We note in passing that we have found some solutions to $n | F_n$ in the statement $F_{5^n} \equiv 0$ mod 5ⁿ. To this we add two statements also involving solutions to $L_n \equiv 0 \mod n$.

Theorem:	$L_n \equiv 1 \mod n$ for :	n a prime.
Theorem:	$L_{2,2k} \equiv 0 \mod 2.3^k$,	k = 1, 2, 3, ···
Theorem:	$F_{2^{2}\cdot 3^{k}}^{2^{1}\cdot 3^{k}} \equiv 0 \mod 2^{2}\cdot 3^{k},$	k = 1, 2, 3, ···
	· · · · · · · · · · · · · · · · · · ·	

A new paper by Hoggatt and Bicknell will further discuss these ideas.

REFERENCES

- 1. V. E. Hoggatt, Jr., Fibonacci and Lucas Numbers, Houghton Mifflin, Boston, 1969.
- 2. D. D. Wall, "Fibonacci Series Modulo m,"American Mathematical Monthly Vol. 67 June-July 1960, pp. 525-532.
- 3. V. E. Hoggatt, Jr., "A Type of Periodicity for Fibonacci Numbers," Math. Magazine, Jan.-Feb. 1955, p. 139.
- 4. Frederick Gebhardt, "Generating Pseudo-Random Numbers by Shuffling a Fibonacci Sequence," Mathematics of Computation, Oct. 1967, pp. 708-709.

[Continued on page 530.]

522