TRIANGULAR ARRAYS SUBJECT TO MAC MAHON'S CONDITIONS

L. CARLITZ ${ }^{1}$
Duke University, Durham, North Carolina and
D. P. ROSELLE ${ }^{2}$

Louisiana State University, Baton Rouge, Louisiana

1. INTRODUCTION

We consider triangular arrays $\left(n_{i j}\right)(j=i(1) k, i=1(1) k)$ and $\left(a_{r S}\right)(s=1(1) k+1$ - $\mathrm{r}, \quad \mathrm{r}=1(1) \mathrm{k})$ and let $\mathrm{T}(\mathrm{n}, \mathrm{k})$ and $\mathrm{C}(\mathrm{n}, \mathrm{k})$, respectively, denote the number of these arrays in which the entries are non-negative integers subject to the conditions

$$
\begin{align*}
& n_{i j} \geq n_{i, j+1}, \quad n_{i j} \geq n_{i+1, j}, \quad n_{11} \leq n \tag{1.1}\\
& a_{r s} \geq a_{r, s+1^{\prime}} \quad a_{r s} \geq a_{r+1, s}, \quad a_{11} \leq n . \tag{1.2}
\end{align*}
$$

The conditions (1.1) and (1.2) are the same as MacMahon [3] imposed on multi-rowed partitions. Rectangular arrays subject to these conditions have been considered by Carlitz and Riordan [1].

It is easy to evaluate $T(1, k)$ and $C(1, k)$. Indeed, taking row sums, we find that $T(1, k)$ is the number of sequences j_{1}, \cdots, j_{k} with $j_{i}>j_{i+1}$ and $j_{1} \leq k$. It follows that $T(1, k)=2^{k}$. In the same way, we find that $C(1, k)$ is the number of sequences j_{1}, \cdots, j_{k} with $k+1-\mathrm{i} \geq \mathrm{j}_{\mathrm{i}} \geq \mathrm{j}_{\mathrm{i}+1^{\circ}}$. Hence $\mathrm{C}(1, \mathrm{k})$ is the familiar Catalan number (c. f_{0} [2])

$$
\begin{equation*}
\mathrm{C}(1, \mathrm{k})=\frac{1}{\mathrm{k}+2}\binom{2 \mathrm{k}+2}{\mathrm{k}+1} \tag{1.3}
\end{equation*}
$$

It will be convenient to have an alternative description of $C(n, k)$ and $T(n, k)$. With each array counted by $T(n, k)$ we associate the $n x k$ array $M=\left(m_{i j}\right)$, where $m_{i j}$ is the number of elements in the $j^{\text {th }}$ row which are greater than or equal to i. Similarly, with each array counted by $C(n, k)$, associate the $n \times k$ array $B=\left(b_{i j}\right)$, where $b_{i j}$ is the number of elements in the $j^{\text {th }}$ column which are greater than or equal to i. That is, $m_{i j}$ $=\operatorname{card}\left\{n_{j t} \mid n_{j t} \geq i\right\}$ and $b_{i j}=\operatorname{card}\left\{a_{t j} \mid a_{t j} \geq i\right\}$. It then follows that the entries of the associated array are subject to the conditions

$$
\begin{equation*}
m_{i j} \geq m_{i, j+1}, \quad m_{i j} \geq m_{i+1, j}, \quad m_{11} \leq k \tag{1.4}
\end{equation*}
$$

[^0]\[

$$
\begin{equation*}
b_{i j} \geq b_{i, j+1}, \quad b_{i j} \geq b_{i+1, j}, \quad b_{i j} \leq k+1-j \tag{1.5}
\end{equation*}
$$

\]

It also is not difficult to verify that the $\mathrm{n} \times \mathrm{k}$ arrays subject to (1.4) and (1.5) are equinumerous with those counted by $T(n, k)$ and $C(n, k)$.

Here we prove that

$$
\begin{equation*}
T(3, k)=2^{k}\binom{2 k+2}{k+1}-2^{k}\binom{2 k+2}{k} \tag{1.7}
\end{equation*}
$$

as well as

$$
\begin{equation*}
C(n, k)=\operatorname{det}\left[\binom{n+k+1-r}{n+r-s}\right] \quad(r, s=1, \cdots, k) . \tag{1.8}
\end{equation*}
$$

It is also shown that

$$
\sum_{n=0}^{\infty} C(n, k) x^{n}=A_{k}(x) \cdot(1-x)^{\frac{-k(k+1)}{2}-1}
$$

where $A_{k}(x)$ is a polynomial of degree $\frac{1}{2} k(k-1)$ with integral coefficients and which satisfies the symmetry condition

$$
\begin{equation*}
x^{\frac{1}{2} k(k-1)} A_{k}\left(\frac{1}{x}\right)=A_{k}(x) \tag{1.9}
\end{equation*}
$$

2. TRIANGULAR ARRAYS

We consider triangular arrays
(2.1)

$$
\begin{gathered}
\mathrm{n}_{11} \mathrm{n}_{12} \cdots \mathrm{n}_{1 \mathrm{k}} \\
\mathrm{n}_{22} \cdots \mathrm{n}_{2 \mathrm{k}} \\
\cdots \\
\mathrm{n}_{\mathrm{kk}}
\end{gathered}
$$

and let $T^{*}(n, k)$ denote the number of these arrays with non-negative integral coefficients satisfying

$$
\begin{equation*}
n_{11}=n, \quad n_{i j} \geq n_{i, j+1}, \tag{2.2}
\end{equation*}
$$

$$
n_{i j} \geq n_{i+1, j}
$$

We also put

$$
T(n, k)=\sum_{j=0}^{n} T^{*}(j, k)
$$

It is immediate that $\mathrm{T}(0, \mathrm{k})=\mathrm{T}^{*}(0, \mathrm{k})=1$ and as observed in Section 1 , it is easy to see that $T^{*}(1, k)=2^{k}-1$. This can also be seen by classifying the arrays according as $n_{1 l}=0$ or 1 and noting that this implies the recurrence

$$
\mathrm{T} *(1, \mathrm{k})=\mathrm{T} *(1, \mathrm{k}-1)+\mathrm{T}(1, \mathrm{k}-1)
$$

A simple verification of the boundary conditions is then all that is necessary to anchor the induction.

Next let $Q\left(m_{11}, m_{21}, \cdots, m_{n 1}\right)$ denote the number of $n x k$ arrays $M=\left(m_{i j}\right)$, where the m_{ij} are subject to the conditions (1.4). It is clear from the remarks of Section 1 that

$$
\mathrm{T}^{*}(\mathrm{n}, \mathrm{k})=\sum \mathrm{Q}\left(\mathrm{~s}_{1}, \cdots, \mathrm{~s}_{\mathrm{n}}\right)
$$

where the summation extends over all n-tuples (s_{1}, \cdots, s_{n}) for which $k \geq s_{1} \geq \ldots \geq s_{n}$ \geq 1. A more useful reformulation of these remarks is the observation that

$$
\begin{equation*}
\mathrm{T}(\mathrm{n}, \mathrm{k})=\mathrm{Q}(\mathrm{k}+1, \mathrm{k}+1, \cdots, \mathrm{k}+1) \tag{2.3}
\end{equation*}
$$

For the case $\mathrm{n}=2$, we find that

$$
\begin{aligned}
Q(m, r) & =1+\sum_{s=1}^{m-1} Q(s)+\sum_{t=1}^{r-1} \sum_{s=t}^{m-1} Q(s, t) \\
& =2^{m-1}+\sum_{t=1}^{r-1} \sum_{s=t}^{m-1} Q(s, t)
\end{aligned}
$$

where we have used (2.3) for the case $n=1$. A more convenient form of this last equation is

$$
Q(\mathrm{~m}, \mathrm{r}+1)=\sum_{\mathrm{s}=\mathrm{r}}^{\mathrm{m}} \mathrm{Q}(\mathrm{~s}, \mathrm{r}) .
$$

[Dec.
It is now a simple induction to show that

$$
Q(m, r+1)=2^{m+r-1}-\sum\left(2^{r-j}-1\right)\binom{m+j-1}{j} \quad(m \geq r+1)
$$

which should be compared with [1, Eq. (1.9)]. In particular, we have

$$
\begin{aligned}
Q(m+1, m+1) & =2^{2 m}-\sum_{j=0}^{m}\left(2^{m-j}-1\right)\binom{m+j}{j} \\
& =\binom{2 m+1}{m} .
\end{aligned}
$$

It now follows from (2.3) that

$$
\begin{equation*}
\mathrm{T}^{*}(2, \mathrm{k})=\binom{2 \mathrm{k}+1}{\mathrm{k}} \tag{2.4}
\end{equation*}
$$

3. THE CASE $\mathrm{n}=3$

The evaluation of $T(3, k)$ is more complicated but leads to a simple result. Let $Q_{c}\left(m_{11}, m_{21}, m_{31}\right)$ denote the number of 3 xc arrays (m_{ij}) whose entries are non-increasing down each column and whose positive entries are strictly decreasing along each row. Then, according to the remarks of Section 1, we have

$$
\begin{equation*}
T(3, k)=Q_{k+2}(k+1, k+1, k+1) \tag{3.1}
\end{equation*}
$$

It is not difficult to show (by induction on c) that

$$
\begin{equation*}
Q_{c+1}(r, s, t)=\sum_{i \leq j \leq k} D_{c-2 i}, c-2 j-1, c-2 k-2, \tag{3.2}
\end{equation*}
$$

where we put

$$
D_{i, j, k}=\left|\begin{array}{ccc}
\binom{r}{i} & \binom{s}{i+1} & \binom{t}{i+2} \\
\binom{r}{j} & \binom{s}{j+1} & \binom{t}{j+2} \\
\binom{r}{k} & \binom{r}{k+1} & \binom{t}{k+2}
\end{array}\right| .
$$

In particular, for $\mathrm{c}=\mathrm{m}=\mathrm{r}=\mathrm{s}=\mathrm{t}$, it follows from (3.1) that

$$
\begin{aligned}
& \left.T(3, m-1)=\sum_{i \leq j \leq k}\left|\begin{array}{c}
\binom{m}{2 i}
\end{array}\binom{m}{2 i-1}\binom{m}{2 i-2}\right| \begin{array}{c}
m \\
2 j+1
\end{array}\right)\left(\begin{array}{c}
m \\
2 j \\
2 j+1
\end{array}\right) \quad\binom{m}{2 k+2} \quad\binom{m}{2 k+1} \quad\binom{m}{2 k}
\end{aligned}
$$

$$
\begin{aligned}
& \left.=2^{m-1} \sum_{i \leq j}\left|\begin{array}{c}
\binom{m}{2 i} \\
\binom{m}{2 i-1}
\end{array}\binom{m}{2 i-2}\right| \begin{array}{c}
m \\
2 j \\
2 j
\end{array}\right) \left.\binom{m}{2 j+1} \right\rvert\, \\
& =2^{m-1} \sum_{i<j}\left\{\binom{m}{2 i}\binom{m}{2 j}+\binom{m}{2 j+1}\binom{m}{2 i-2}+\binom{m}{2 i-1}\binom{m}{2 j-1}\right. \\
& \left.-\binom{m}{2 i-1}\binom{m}{2 j+1}-\binom{m}{2 i}\binom{m}{2 j-1}-\binom{m}{2 j}\binom{m}{2 i-2}\right\} \\
& =2^{m-1}\left\{\sum_{j}\binom{m}{j}^{2}-\sum_{j}\binom{m}{j}\binom{m}{j+1}\right\}
\end{aligned}
$$

This reduces to

$$
\begin{gather*}
\mathrm{T}(3, \mathrm{k})=2^{\mathrm{k}}\binom{2 \mathrm{k}+2}{\mathrm{k}+1}-2^{\mathrm{k}}\binom{2 \mathrm{k}+2}{\mathrm{k}} \tag{3.3}\\
\mathrm{~T}^{*}(3, \mathrm{k})=2^{\mathrm{k}}\binom{2 \mathrm{k}+2}{\mathrm{k}+1}-2^{\mathrm{k}}\binom{2 \mathrm{k}+2}{\mathrm{k}}-\binom{2 \mathrm{k}+1}{\mathrm{k}} \tag{3.4}
\end{gather*}
$$

It appears unlikely that this method would lead to a simple result for $\mathrm{T}(\mathrm{n}, \mathrm{k})$ even though (3.2) can be generalized in an obvious manner.

4. CATALAN DETERMINANTS

We consider triangular arrays

$$
\begin{align*}
& a_{11} \cdots a_{1, k-1}{ }^{a_{1 k}} \\
& a_{21} \cdots a_{2, k-1} \tag{4.1}\\
& a_{k 1}
\end{align*}
$$

and let $C(n, k)$ denote the number of these arrays with

$$
\begin{equation*}
a_{11} \leq n, \quad a_{i j} \geq a_{i, j+1}, \quad a_{i j} \geq a_{i+1, j} \tag{4.2}
\end{equation*}
$$

Then, as observed in Section 1, we have that $C(n, k)$ is also the number of $n \times k$ arrays $B=\left(b_{i j}\right)$ subject to the conditions (1.5). Also, if we put $C\left(j_{1}, \cdots, j_{k}\right)$ equal to the number of arrays (4.1) with $\mathrm{a}_{1 \mathrm{~s}}=\mathrm{j}_{\mathrm{s}}$, then we find that

$$
\begin{equation*}
\mathrm{C}\left(\mathrm{j}_{\mathrm{i}}, \cdots, \mathrm{j}_{\mathrm{k}}\right)=\sum_{\mathrm{r}_{\mathrm{k}-1}} \cdots \sum_{\mathrm{r}_{1}} \mathrm{c}\left(\mathrm{r}_{1}, \cdots, \mathrm{r}_{\mathrm{k}-1}\right) \tag{4.3}
\end{equation*}
$$

where the $i^{\text {th }}$ summand extends over the range $r_{k+1-i} \leq r_{k-i} \leq j_{k-i}$ and, for convenience, we put $\mathrm{r}_{\mathrm{k}}=0$.

It is an easy induction to show that (4.3) is the same as

$$
\mathrm{C}\left(\mathrm{j}_{1}, \cdots, \mathrm{j}_{\mathrm{k}}\right)=\operatorname{det}\left[\binom{\mathrm{j}_{\mathrm{S}}+\mathrm{k}-\mathrm{r}}{\mathrm{k}+\mathrm{s}-2 \mathrm{r}}\right] \quad(\mathrm{r}, \mathrm{~s}=1,2, \cdots, \mathrm{k}-1) .
$$

In particular, we find that

$$
\begin{equation*}
C(n, k)=\operatorname{det}\left[\binom{n+k+1-r}{n+r-s}\right] \quad(r, s=1, \cdots, k) \tag{4.4}
\end{equation*}
$$

Notice that the special case (1.3) follows from (4.4) and the identity

$$
\frac{1}{k+2}\binom{2 k+2}{k+1}=\sum_{j=0}^{k}(-1)^{j}\binom{k+1-j}{j+1} \frac{1}{k+1-j}\binom{2 k-2 j}{k-j}
$$

In the next place if we write (4.4) in the form

$$
\begin{equation*}
C(n, k)=\operatorname{det}\left[\binom{n+k+1-r}{k+1-2 r+s}\right] \tag{4.5}
\end{equation*}
$$

then we can use this determinant to define $C(n, k)$ for all real numbers n. According to this definition, we find that $C(n, k)$ is a polynomial of degree $\frac{1}{2} k(k+1)$ in n and satisfies the equation

$$
\begin{equation*}
\mathrm{C}(\mathrm{n}, \mathrm{k})=(-1)^{\frac{1}{2} \mathrm{k}(\mathrm{k}+1)} \mathrm{C}(-\mathrm{k}-\mathrm{n}-1, \mathrm{k}) \tag{4.6}
\end{equation*}
$$

Hence if we put

$$
\begin{equation*}
C(n, k)=\sum_{j=k}^{\overline{2}} a_{k j}\binom{n+j}{j}, \tag{4.7}
\end{equation*}
$$

then we have

$$
\begin{aligned}
C(-k-n-1, k) & =\sum_{j=k}^{\frac{1}{2} k(k+1)} a_{k j}(-k-n+j-1) \\
& =\sum_{j=k}^{\frac{1}{2} k(k+1)}(-1)^{j} a_{k j}\binom{k+n}{j}
\end{aligned}
$$

In order to summarize these results in terms of generating functions, we first put $C_{k}(\mathrm{x})=\sum \mathrm{C}(\mathrm{n}, \mathrm{k}) \mathrm{x}^{\mathrm{n}}$ and note that

$$
C_{k}(x)=\sum_{j=k}^{\frac{1}{2} k(k+1)} a_{k j}(1-x)^{-j-1}
$$

and

$$
\begin{aligned}
(-1)^{\frac{1}{2} k(k+1)} C_{k}(x) & =\sum_{n=0}^{\infty} C(-k-n-1, k) x^{n} \\
& =\sum_{j=k}^{\frac{1}{2} k(k+1)}(-1)^{j} a_{k j} x^{j-k}(1-x)^{-j-1} .
\end{aligned}
$$

[Continued on page 658.]

[^0]: ${ }^{1}$ Supported in part by National Science Foundation Grant GP17071.
 ${ }^{2}$ Supported in part by National Science Foundation Grant GP11397.

