$$
\mathrm{f}_{2}\left(\mathrm{f}_{2}\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right), \mathrm{p}_{3}\right)
$$

For $\mathrm{n}=4$ there are 360 polynomials, provided that different compositions yield distinct polynomials.

We are unable to determine the number of counting polynomials of P^{n}, except the case $\mathrm{n}=1$.

Theorem. The identical function $f_{1}\left(p_{1}\right)=p_{1}$ is the only polynomial mapping $1-1$ from P onto itself.

Proof. Suppose $g(p)$ is a counting polynomial of P. Consider the curve $y=g(x)$. It is clear that after a finite number of ups and downs the curve is monotone increasing (to $+\infty$). Let a be a positive integer such that (1) $\mathrm{g}(\mathrm{x})$ is monotone for $\mathrm{x} \geq \mathrm{a}$ and (2) $\mathrm{g}(\mathrm{x})<$ $g(a)$ for $x<a$. Since $g(x)$ is a counting function of P, it has to satisfy

$$
g(a)=a, g(a+1)=a+1, \cdots
$$

For, if $g(a)<a$, then positive numbers $g(1), g(2), \cdots, g(a)$ cannot all be distinct, and if $\mathrm{g}(\mathrm{a})>\mathrm{a}$ then the curve must come down beyond a , contrary to (1). Now, by the Fundamental Theorem of Algebra we have $g(x)=x$ for all x.

Question. Are

$$
\mathrm{x}_{1}+\binom{s_{2}-1}{2} \quad \text { and } \quad \mathrm{x}_{2}+\binom{\mathrm{s}_{2}-1}{2}
$$

the only two polynomials mapping $1-1$ from P^{2} onto P ?

REFERENCES

1. E. A. Maier, "One-One Correspondence Between the set N of Positive Integers and the Sets N^{n} and $\underset{n \in N^{\prime}}{\cup} N^{n}$," Fibonacci Quarterly, Oct. 1970, pp. 365-371.
2. P. W. Zehna and R. L. Johnson, Elements of Set Theory, Allyn and Bacon, Inc., Boston, 1962, p. 108.
[Continued from p. 584.]
REFERENCES
3. H. W. Gould, "Equal Products of Generalized Binomial Coefficients," Fibonacci Quarterly, Vol. 9, No. 4 (1971), pp. 337-34.6.
4. H. W. Gould, D. C. Rine, and W. L. Scharff, "Algorithm and Computer Program for the Determination of Equal Products of Generalized Binomial Coefficients, $"$ to be published.
5. V. E. Hoggatt, Jr., and Walter Hansell, "The Hidden Hexagon Squares," Fibonacci Quarterly, Vol. 9, No. 2 (1971), pp. 120, 133.
6. V. E. Hoggatt, Jr., and G. L. Alexanderson, "A Property of Multinomial Coefficients," Fibonacci Quarterly, Vol. 9, No. 4 (1971), pp. 351-356, 420-421.
7. V. E. Hoggatt, Jr., and A. P. Hillman, "Proof of Gould's Conjecture on Greatest Common Divisors." Fibonacci Quarterlv. Vol. 10. No. 6 (1972), pd. 565-568.
