A COUNTING FUNCTION OF INTEGRAL n-TUPLES

HWA S. HAHN West Georgia College, Carrollton, Georgia

1. INTRODUCTION

Let P be the set of positive integers and let P^n be the set of n-tuples of positive integers. Many freshmen books talk about how to count P^2 but rarely exhibit a counting function such as [2]

$$f_2(p_1, p_2) = p_1 + (p_1 + p_2 - 1)(p_1 + p_2 - 2)/2$$

E. A. Maier presented a counting function of P^n in this Quarterly [1]. In this note we show another more simple counting function of P^n and also discuss its inverse function and some applications.

2. THEOREM

The following polynomial in n variables

(1)
$$f_n(p_1, p_2, \dots, p_n) = p_1 + \sum_{k=2}^n {s_k - 1 \choose k}$$

where

$$s_k = p_1 + p_2 + \dots + p_k$$
 and $\binom{s_k - 1}{k} = 0$

for $s_k - 1 \le k$, is a counting function of P^n ,

<u>Proof.</u> Consider the set, call it the s-layer, of lattice points of positive coordinates (x_1, x_2, \dots, x_n) satisfying

$$\mathbf{x}_1 + \mathbf{x}_2 + \cdots + \mathbf{x}_n = \mathbf{s} \cdot \mathbf{x}_n$$

This s-layer contains

$$\left(\begin{array}{c} s - 1\\ n - 1\end{array}\right)$$

points. For, it is the number of ways of putting n - 1 markers in s - 1 spaces between 1's in

$$1 + 1 + \dots + 1 = s$$
.

Then the collection of s-layers, call it a pyramid, ranging $n \le s \le s_n$, which is the largest pyramid without the given point (p_1, p_2, \dots, p_n) , contains

,

$$\binom{n-1}{n-1} + \binom{n}{n-1} + \cdots + \binom{s_n-2}{n-1}$$

 $\begin{pmatrix} s_n - 1 \\ n \end{pmatrix}$.

points. But this sum is simply

For,

$$\begin{pmatrix} s_n - 1 \\ n \end{pmatrix} = \begin{pmatrix} s_n - 2 \\ n - 1 \end{pmatrix} + \begin{pmatrix} s_n - 2 \\ n \end{pmatrix}$$
$$= \begin{pmatrix} s_n - 2 \\ n - 1 \end{pmatrix} + \begin{pmatrix} s_n - 3 \\ n - 1 \end{pmatrix} + \begin{pmatrix} s_n - 3 \\ n \end{pmatrix}$$
$$= \cdots$$

Next, we count points (x_1, x_2, \dots, x_n) such that

$$\sum x_i = s_n$$
 ,

up to (p_1, p_2, \dots, p_n) . Since x_n is determined by $(x_1, x_2, \dots, x_{n-1})$ and s_n , we need to count only (n - 1)-tuples from $(1, 1, \dots, 1)$ to $(p_1, p_2, \dots, p_{n-1})$. For this we may use the function f_{n-1} (p_1, p_2, ..., p_{n-1}).

Thus, we obtain

$$f_n(p_1, p_2, \dots, p_n) = f_{n-1}(p_1, p_2, \dots, p_{n-1}) + {s_n - 1 \choose n}$$

And this recursive formula gives

$$f_n(p_1, p_2, \dots, p_n) = p_1 + \sum_{k=2}^n {s_k - 1 \choose k}$$

 $(taking f_1(p_1) = p_1).$

Notes. 1. For $s_0 = 1$,

$$f_n(p_1, p_2, \dots, p_n) = \sum_{k=0}^n {s_k - 1 \choose k}$$

which is a string of pyramids of each dimension from $\ 0$ to n.

2. From its counting method f_n is clearly 1 - 1. However, we can also prove as follows. If $(p_1, p_2, \dots, p_n) \neq (p'_1, p'_2, \dots, p'_n)$, then there exists m such that $s_m \neq s'_m$ and $s_k = s'_k$ for $k \ge m$. Say, $s_m \le s'_m$ (without loss of generality). Since 1 = $s_0 \leq s_1 <$ \ldots < $s_m \leq$ $s_m - 1$,

[Dec.

.

610

$$\sum_{k=0}^{m} \binom{s_{k}-1}{k} \leq \sum_{k=0}^{m} \binom{s_{m}-(m-k)-1}{k} = \sum_{k=0}^{m} \binom{s_{m}-(m-k)-1}{s_{m}-m-1}$$
$$= \binom{s_{m}}{s_{m}-m} = \binom{s_{m}}{m} \leq p_{1}^{t} + \binom{s_{m}^{t}-1}{m} \leq \sum_{k=0}^{m} \binom{s_{k}^{t}-1}{k}$$

These inequalities imply $f_n(p_1, \dots, p_n) \leq f_n(p_1', \dots, p_n')$. The following section also shows that f_n is onto.

3. The inverse mapping
$$f_n^{-1} : P \longrightarrow P^n$$

The following algorithm produces $s_n, s_{n-1}, \cdots, s_1(=p_1)$ from a given positive integer p.

First, determine s_n satisfying

$$\binom{s_n - 1}{n}$$

Then $s_{n-1}, s_{n-2}, \cdots, s_1$ from

$$\binom{s_{n-1}-1}{n-1} \leq p - \binom{s_n-1}{n} \leq \binom{s_{n-1}}{n-1} ,$$

$$\binom{s_{n-2}-1}{n-2} \leq p - \binom{s_n-1}{n} - \binom{s_{n-1}-1}{n-1} \leq \binom{s_{n-2}}{n-2} ,$$

$$\cdots$$

$$\binom{s_1-1}{1} \leq p - \sum_{k=0}^n \binom{s_k-1}{k} = \binom{s_1}{1} .$$

Thus

$$f_n - 1(p) = (s_1, s_2 - s_1, \dots, s_n - s_{n-1})$$
,

where

$$s_k - s_{k-1} = p_k$$
 for $k \ge 1$ and $s_1 = p_1$.
4. PYRAMIDAL NUMBERS $\binom{s_n - 1}{n}$ IN PASCAL'S TRIANGLE

In the construction of the inverse image $f_n^{-1}(p)$ it is helpful to use Pascal's triangle, in which $(n + 1)^{st}$ diagonal line is the ordering of all n dimensional pyramids.

٩

For example, to compute $f_3^{-1}(100)$ express 100 as a sum of pyramidal numbers of dimensions 3, 2, and 1 as follows:

$$100 = 84 + 15 + 1 = \begin{pmatrix} 10 & -1 \\ 3 \end{pmatrix} + \begin{pmatrix} 7 & -1 \\ 2 \end{pmatrix} + 1.$$

Then s_3 = 10, s_2 = 7, s_1 = 1 and thus

 $f_3^{-1}(100) = (1, 7 - 1, 10 - 7) = (1, 6, 3)$.

5. COUNTING LATTICE POINTS IN EUCLIDEAN n-SPACE

Take any counting function of $\,{\rm Z}\,,\,$ the set of integers, for example $\,f_0\,$ defined by

$$f_0(z) = 2\delta z + \frac{1-\delta}{2} ,$$

where

$$\delta = \begin{cases} 1 & \text{for } z > 0 \\ -1 & \text{for } z \le 0 \end{cases}$$

Then the ordinal number for (z_1, z_2, \cdots, z_n) is given

$$f_n(f_0(z_1), f_0(z_2), \dots, f_0(z_n)) = \sum_{k=0}^n {S_k - 1 \choose k}$$
,

where

$$s_k = \sum_{i=1}^k f_0(z_i)$$
.

[Continued on page 627.]