A COUNTING FUNCTION OF INTEGRAL n-TUPLES

HWA S. HAHN
West Georgia College, Carrollton, Georgia

1. INTRODUCTION

Let P be the set of positive integers and let P^{n} be the set of n-tuples of positive integers. Many fresnmen books talk about how to count P^{2} but rarely exhibit a counting function such as [2]

$$
\mathrm{f}_{2}\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right)=\mathrm{p}_{1}+\left(\mathrm{p}_{1}+\mathrm{p}_{2}-1\right)\left(\mathrm{p}_{1}+\mathrm{p}_{2}-2\right) / 2 .
$$

E. A. Maier presented a counting function of P^{n} in this Quarterly [1]. In this note we show another more simple counting function of P^{n} and also discuss its inverse function and some applications.

2. THEOREM

The following polynomial in n variables

$$
\begin{equation*}
\mathrm{f}_{\mathrm{n}}\left(\mathrm{p}_{1}, \mathrm{p}_{2}, \cdots, \mathrm{p}_{\mathrm{n}}\right)=\mathrm{p}_{1}+\sum_{\mathrm{k}=2}^{\mathrm{n}}\binom{\mathrm{~s}_{\mathrm{k}}-1}{\mathrm{k}}, \tag{1}
\end{equation*}
$$

where

$$
s_{k}=p_{1}+p_{2}+\cdots+p_{k} \quad \text { and }\binom{s_{k}-1}{k}=0
$$

for $s_{k}-1<k$, is a counting function of P^{n},
Proof. Consider the set, call it the s-layer, of lattice points of positive coordinates ($x_{1}, x_{2}, \cdots, x_{n}$) satisfying

$$
x_{1}+x_{2}+\cdots x_{n}=s
$$

This s-layer contains

$$
\binom{\mathrm{s}-1}{\mathrm{n}-1}
$$

points. For, it is the number of ways of putting $n-1$ markers in $s-1$ spaces between $1^{\prime} \mathrm{s}$ in

$$
1+1+\cdots+1=s .
$$

Then the collection of s-layers, call it a pyramid, ranging $n \leq s<s_{n}$, which is the largest pyramid without the given point $\left(p_{1}, p_{2}, \ldots, p_{n}\right)$, contains

$$
\binom{n-1}{n-1}+\binom{n}{n-1}+\cdots+\binom{s_{n}-2}{n-1}
$$

points. But this sum is simply

$$
\binom{s_{n}-1}{n}
$$

For,

$$
\begin{aligned}
\binom{s_{n}-1}{n} & =\binom{s_{n}-2}{n-1}+\binom{s_{n}-2}{n} \\
& =\binom{s_{n}-2}{n-1}+\binom{s_{n}-3}{n-1}+\binom{s_{n}-3}{n} \\
& =\cdots
\end{aligned}
$$

Next, we count points $\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ such that

$$
\sum x_{i}=s_{n},
$$

up to $\left(p_{1}, p_{2}, \cdots, p_{n}\right)$. Since x_{n} is determined by $\left(x_{1}, x_{2}, \cdots, x_{n-1}\right)$ and s_{n}, we need to count only ($n-1$)-tuples from $(1,1, \cdots, 1)$ to $\left(p_{1}, p_{2}, \cdots, p_{n-1}\right)$. For this we may use the function $f_{n-1}\left(p_{1}, p_{2}, \cdots, p_{n-1}\right)$.

Thus, we obtain

$$
f_{n}\left(p_{1}, p_{2}, \cdots, p_{n}\right)=f_{n-1}\left(p_{1}, p_{2}, \cdots, p_{n-1}\right)+\binom{s_{n}-1}{n}
$$

And this recursive formula gives

$$
\mathrm{f}_{\mathrm{n}}\left(\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathrm{n}}\right)=\mathrm{p}_{1}+\sum_{\mathrm{k}=2}^{\mathrm{n}}\binom{\mathrm{~s}_{\mathrm{k}}-1}{\mathrm{k}},
$$

(taking $\left.f_{1}\left(p_{1}\right)=p_{1}\right)$.
Notes. 1. For $\mathrm{s}_{0}=1$,

$$
f_{n}\left(p_{1}, p_{2}, \ldots, p_{n}\right)=\sum_{k=0}^{n}\binom{s_{k}-1}{k}
$$

which is a string of pyramids of each dimension from 0 to n.
2. From its counting method f_{n} is clearly 1-1. However, we can also prove as follows. If $\left(p_{1}, p_{2}, \cdots, p_{n}\right) \neq\left(p_{1}^{\prime}, p_{2}^{\prime}, \cdots, p_{n}^{\prime}\right)$, then there exists m such that $\mathrm{s}_{\mathrm{m}} \neq \mathrm{s}_{\mathrm{m}}^{\prime}$ and $\mathrm{s}_{\mathrm{k}}=\mathrm{s}_{\mathrm{k}}^{\prime}$ for $\mathrm{k}>\mathrm{m}$. Say, $\mathrm{s}_{\mathrm{m}}<\mathrm{s}_{\mathrm{m}}^{\prime}$ (without loss of generality). Since $1=\mathrm{s}_{0} \leq \mathrm{s}_{1}<\ldots<\mathrm{s}_{\mathrm{m}} \leq \mathrm{s}_{\mathrm{m}}-1$,

$$
\begin{aligned}
\sum_{k=0}^{m}\binom{s_{k}-1}{k} & \leq \sum_{k=0}^{m}\binom{s_{m}-(m-k)-1}{k}=\sum_{k=0}^{m}\binom{s_{m}-(m-k)-1}{s_{m}-m-1} \\
& =\binom{s_{m}}{s_{m}-m}=\binom{s_{m}}{m}<p_{1}^{\prime}+\binom{s_{m}^{\prime}-1}{m} \leq \sum_{k=0}^{m}\binom{s_{k}^{p}-1}{k} .
\end{aligned}
$$

These inequalities imply $f_{n}\left(p_{1}, \cdots, p_{n}\right)<f_{n}\left(p_{1}^{\prime}, \cdots, p_{n}^{\prime}\right)$. The following section also shows that f_{n} is onto.

3. THE INVERSE MAPPING $\mathrm{f}_{\mathrm{n}}^{-1}: \mathrm{P} \longrightarrow \mathrm{P}^{\mathrm{n}}$

The following algorithm produces $s_{n}, s_{n-1}, \cdots, s_{1}\left(=p_{1}\right)$ from a given positive integer p .

First, determine s_{n} satisfying

$$
\binom{s_{n}-1}{n}<p \leq\binom{ s_{n}}{n}
$$

Then $s_{n-1}, s_{n-2}, \cdots, s_{1}$ from

$$
\begin{gathered}
\binom{s_{n-1}-1}{n-1}<p-\binom{s_{n}-1}{n} \leq\binom{ s_{n-1}}{n-1}, \\
\binom{s_{n-2}-1}{n-2}<p-\binom{s_{n}-1}{n}-\binom{s_{n-1}-1}{n-1} \leq\binom{ s_{n-2}}{n-2}, \\
\cdots \cdot \\
\binom{s_{1}-1}{1}<p-\sum_{k=0}^{n}\binom{s_{k}-1}{k}=\binom{s_{1}}{1} .
\end{gathered}
$$

Thus

$$
f_{n}-1(p)=\left(s_{1}, s_{2}-s_{1}, \cdots, s_{n}-s_{n-1}\right)
$$

where

$$
s_{k}-s_{k-1}=p_{k} \text { for } k>1 \text { and } s_{1}=p_{1}
$$

4. PYRAMIDAL NUMBERS $\binom{\mathrm{s}_{\mathrm{n}}-1}{\mathrm{n}}$ IN PASCAL'S TRIANGLE

In the construction of the inverse image $f_{n}^{-1}(p)$ it is helpful to use Pascal's triangle, in which $(n+1)^{\text {st }}$ diagonal line is the ordering of all n dimensional pyramids.

For example, to compute $f_{3}{ }^{-1}(100)$ express 100 as a sum of pyramidal numbers of dimensions 3,2 , and 1 as follows:

$$
100=84+15+1=\binom{10-1}{3}+\binom{7-1}{2}+1
$$

Then $s_{3}=10, s_{2}=7, s_{1}=1$ and thus

$$
\mathrm{f}_{3}^{-1}(100)=(1,7-1,10-7)=(1,6,3)
$$

5. COUNTING LATTICE POINTS IN EUCLIDEAN n-SPACE

Take any counting function of Z, the set of integers, for example f_{0} defined by

$$
\mathrm{f}_{0}(\mathrm{z})=2 \delta \mathrm{z}+\frac{1-\delta}{2}
$$

where

$$
\delta=\left\{\begin{aligned}
& 1 \text { for } z>0 \\
&-1 \text { for } \\
& z \leq 0
\end{aligned}\right.
$$

Then the ordinal number for $\left(z_{1}, z_{2}, \cdots, z_{n}\right)$ is given

$$
f_{n}\left(f_{0}\left(z_{1}\right), f_{0}\left(z_{2}\right), \cdots, f_{0}\left(z_{n}\right)\right)=\sum_{k=0}^{n}\binom{S_{k}-1}{k},
$$

where

$$
\mathrm{s}_{\mathrm{k}}=\sum_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{f}_{0}\left(\mathrm{z}_{\mathrm{i}}\right)
$$

[Continued on page 627.]

