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1, INTRODUCTION 

It is well known that the Fibonacci numbers are encountered in the optimization of the 
procedure for searching for the maximum or minimum value of a unimodal function [1-6] . 
The optimum search procedure can be derived by the method of dynamic programming [3, 4, 
5, 6 ] , In the present note it is shown that the sequence of optimal control inputs, for a 
simple discrete- t ime system with a quadratic performance cri ter ion, can be expressed in 
t e rms of the Fibonacci numbers. 

2. A DISCRETE-TIME SYSTEM 

Consider the very simple l inear discrete- t ime system* described by the difference 
equation 
(1) x(k + 1) = x(k) + u(k) , 

where u(k) is the control input to the system at discrete time instant k, and x(k) is a state 
variable of the system at the same instant. Suppose that it is desired to find the sequence of 
N control inputs u( l ) s • • • , u(N) whichs starting from an initial system state x( l ) , gives 
the minimum possible value to the summation F defined by 

N 
(2) T ~ 

~k^T 

IN 

F = \ j [x2(k) + u2(k)] 

The final state x(N) may be prescr ibed or not; assume for the present that the final state is 
zero. 

This problem can easily be solved by dynamic programming [4-6] . The procedure is 
to s ta r t by supposing N = 1, use the solution of that simple problem to find the solution for 
N = 2 t and proceed to derive a recurrence relationship which gives the solution of the prob-
lem for la rger values of N. If we define the quantity SN(x) to be the minimum value of the 
summation F reached in an N-stage process starting from the initial state x, we obtain the 
recurrence relationship 
(3) S (x) = min{x 2 + u2 + S x(x + u)} 

*For a discussion of discrete- t ime systems, see , for example, [7] . 
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The value of Sfto, for the specified endpoint x(2) = 0, can easily be seen to be 

(4) Si {x) = 2x2 

for the control input 
(5) UiCL) = -x , 

where the notation %(!) means the f irst (and only) input of the one-stage p rocess , and where 
the initial state x is understood. In this case there i s really no optimization problem, as 
the specification of the final endpoint leaves no alternative but to choose u = -x as given by 
(5). Having obtained the solution described by (4) and (5), however, we can proceed to find 
S2(x) by substitution in (3) as follows: 

(6) S2(x) = min{x 2 + u2 + 2(x + u)2} 
u 

Performing the minimization operation by differentiating the expression in braces with r e -
spect to u, we find that the optimum value of u is given by 

(7) u2(l) = - | x , 

where the notation u2(l) represents the f irs t input of the two-stage process . Substituting 
(7) in (6), we obtain 

(8) % « = | x2 

Based on Equations (4) and (8), suppose that 

(9) SN(x) = K(N)x2 . 

SN(x) can be found by performing the minimizing operation involved in the expression 

(10) SXT(x) = min{x 2 + u2 + K(N - l)(x + u)2} 
^ u 

This minimization gives the value of u to be 

<n> UN(1) = m^ij-T-ix • 

Substitution of (11) into (10) leads to the result 

(12) KtK) - ^ ( N - :L> + 1 

(12) K(N) - K ( N _ !) + i • 
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We see from (12) that, if K(N - 1) is a rational number, K(N) will also be rationaL There -
fore, because K(2) is rational as shown by Eq. (8), K(N) is rational for all values of N. 
If K(N) is expressed in the form A(N)/B(N), where A and B are integers with no com-
mon factor, the following resul ts can be derived: 

(13) A(N) _ 2A(N - 1) + B(N - 1) 
B(N5 " ~A(N - 1) + B(N - 1) 

(14) A(N) = 2A(N - 1) + B(N - 1) 

(15) B(N) = A(N - 1) + B(N - 1) . 

The two f i rs t -order difference equations (14) and (15) can be expressed as a second-order 
difference equation (in either A or B) of the form 

(16) A(N + 1) - 3A(N) + A(N - 1) = 0 

Compare Eq. (16) with the following equation for the Fibonacci numbers F (n) for val-
ues of n separated by two units instead of one: 

(17) F(n + 2) - 3F(n) + F(n - 2) = 0 . 

Equation (17) can easily be obtained from the basic equation for the Fibonacci numbers 

(18) F(k) = F(k - 1) + F(k - 2) 

by taking k = n, n + 1, n + 2, and manipulating the three equations so obtained. Compar-
ing Eqs. (16) and (17), and using the initial conditions given by Eq. (8), it is found that K(N) 
can be expressed in the form 

no* K(m - F ( 2 N +. V 
(19) K(N) F ( 2 N ) » 

where F(k) is the Fibonacci number defined by (18) with initial conditions F(0) = 0, F(l) = 
1. Equation (11) leads to the resul t 

(20) u N ( l ) = - F % ^ 1 } x . 

This resul t shows that the optimal control input is a function of the present state and the num-
ber of stages to go to the end of the process . 

If the input given by Eq. (20) is applied to the system in initial state x( l ) , the next state 
x(2) is given by 
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F(2N - 1) 
A W - , . - -

(21) 

x<2> - 1 1 • ^Wmr] ^ 
F(2N - 2) () 

F(2N) X U ' 

The next input uN(2) can be expressed in the form 

„ (21 - ~ F ( 2 N - 3> F(2N - 2) ( . 
V Al F(2N - 2) F(2Ny 

(22) 
= -F(2N - 3) 

FT2N5 X U ' 

The sequence of optimal control Inputs uN(i) can therefore be expressed in the form 

,.v -F(2N - 2i + 1) /<M 
UN(1) = F(2N) ' X ( 1 ) 

(23) 
(i = 1, • • • , N) . 

If the final state is unspecified and therefore allowed to take on any value, the value of 
the last control input ikJN) is zero , and the values of K(N) and u N ( l ) can be expressed 
in the forms 

/ 0 1_v M -F(2N - 2) 
( 2 5 ) U N ( 1 ) = F(2N - 1) X • 

The optimal sequence of control inputs uN(i) is in this case given by 

<26> v > - 1(2N: i f x ^ 
(i = 1, • • • , N) . 

These resul ts are discussed more fully, and compared with the optimal control input 
for a continuous-time system, in [6] . 

REFERENCES 

1. R. Bellman, Dynamic Programming, Princeton University P r e s s , 1957, pp. 34-36. 
2. L. T. Oliver and D. J. Wilde, "Symmetric Sequential Minimax Search for a Maximum,!f 

Fibonacci Quarterly, Vol. 2, No. 3, Oct. , 1964, pp. 169-175. 
3. D. J . Wilde, Optimum Seeking Methods, Prentice-Hall , 1964. 
[Continued on page 608. ] 


