AN OLD FIBONACCI FORMULA AND STOPPING RULES

REUVEN PELEG

Jerusalem, Israel

A fair coin is tossed, a head giving a return of +1 , a tail of -1 . Let the sum of these returns for a sequence of m throws be designated S_{m}. We define a stopping rule for the sequence: The sequence of throws will end if S_{m} is outside the closed interval -2 to +1 .

At the end of m throws, if all possible variations are considered, there will be a certain number of 1 's, 0 's, -1 's and -2 's which will be designated $n(1), n(0), n(-1)_{s}$ and $n(-2)$, respectively. The number of sequences that terminate at m because of the stopping rules will be denoted $\phi(\mathrm{m})$.

Let us consider the first few steps. At the end of the first throw, there are two possible values $+1,-1$, and no terminations. Hence $n(1)=1, n(-1)=1, \phi(1)=0$.

At the end of two throws, the possible values are $+2,0,0,-2$, the first being a termination. Hence $\mathrm{n}(0)=2, \mathrm{n}(-2)=1, \phi(2)=1$. Continuing with the non-terminating sequences, we have values $-1,+1,-1,+1,-3,-1$ at the end of three throws. Hence $\phi(3)=1$, $\mathrm{n}(1)=2, \mathrm{n}(-1)=3$.

The following table summarizes a few additional steps.

		m							
	1	2	3	4	5	6	$2 \mathrm{~m}-1$	2 m	$2 \mathrm{~m}+1$
$\phi(\mathrm{~m})$	0	1	1	2	3	5	$\mathrm{~F}_{2 \mathrm{~m}-2}$	$\mathrm{~F}_{2 \mathrm{~m}-1}$	$\mathrm{~F}_{2 \mathrm{~m}}$
$\mathrm{n}(1)$	1	0	2	0	5	0	$\mathrm{~F}_{2 \mathrm{~m}-1}$	0	$\mathrm{~F}_{2 \mathrm{~m}+1}$
$\mathrm{n}(0)$	0	2	0	5	0	13	0	$\mathrm{~F}_{2 \mathrm{~m}+1}$	0
$\mathrm{n}(-1)$	1	0	3	0	8	0	$\mathrm{~F}_{2 \mathrm{~m}}$	0	$\mathrm{~F}_{2 \mathrm{~m}+2}$
$\mathrm{n}(-2)$	0	1	0	3	0	8	0	$\mathrm{~F}_{2 \mathrm{~m}}$	0

The general pattern is shown under the columns $2 \mathrm{~m}-1,2 \mathrm{~m}, 2 \mathrm{~m}+1$. Now assume that we have the pattern in column $2 \mathrm{~m}-1$. The 1 's get out of bounds at 2 giving $\phi(2 \mathrm{~m})=$ $\mathrm{F}_{2 \mathrm{~m}-1}$. The 1 's and -1 's combine to give $\mathrm{F}_{2 \mathrm{~m}-1}+\mathrm{F}_{2 \mathrm{~m}}=\mathrm{F}_{2 \mathrm{~m}+1}$ zeros. The -1 's go to -2 giving $\mathrm{F}_{2 \mathrm{~m}}$. Starting at 2 m , the -2 's go out of bounds giving $\phi(2 \mathrm{~m}+1)=\mathrm{F}_{2 \mathrm{~m}}$ 。 The 0 's and -2 's combine to give $F_{2 m}+F_{2 m+1}=F_{2 m+2}$ for -1 . The 0 's also go to 1 putting $\mathrm{F}_{2 \mathrm{~m}+1}$ in that place. Thus the process is seen to continue indefinitely.

REFERENCE

A. Wald, "On Cumulative Sums of Random Variables," Annals of Mathematical Statistics, Vol. 15 (1944), p. 281.

