LINEAR DIFFERENCE EQUATIONS AND GENERALIZED CONTINUANTS PART I: ALGEBRAIC DEVELOPMENTS

L. R. SHENTON

Computer Center,University of Georgia, Athens, Georgia

1. INTRODUCTION

A continuant determinant (or matrix) has elements in the diagonals through (1,1), $(1,2)$, and $(2,1)$ only, and zeros elsewhere. We can use the notation $K_{S}\left(h_{1} g_{g_{1}^{\prime}}\right)$ for the $s^{\text {th }}$ order continuant, where
(1)

$$
\left|\begin{array}{ccccc}
\mathrm{h}_{1} & \mathrm{~g}_{1} & 0 & & \\
\mathrm{~g}_{1}^{\prime} & \mathrm{h}_{2} & \mathrm{~g}_{2} & & \\
0 & \mathrm{~g}_{2}^{\prime} & & & \\
& & & & \mathrm{g}_{\mathrm{S}} \\
& & & \mathrm{~g}_{\mathrm{S}}^{\prime} & \mathrm{h}_{\mathrm{s}}
\end{array}\right|_{(\mathrm{s})}
$$

As is well known, by expanding this by its last row and column, we find the recurrence relation (omitting the arguments for brevity)

$$
\begin{equation*}
K_{s}=h_{s} K_{s-1}-g_{s}^{\prime} g_{s} K_{s-2} \quad s=2,3, \cdots \tag{2}
\end{equation*}
$$

with $K_{0}=1, K_{1}=h_{1}$. Note that K_{S} is unchanged in value if the signs are changed for any subset of the $\mathrm{g}^{\prime} \mathrm{s}$ along with the corresponding subset of the $\mathrm{g}^{\prime \prime} \mathrm{s}$. Again note that the usual Fibonacci sequence arises from either $g_{\lambda}=1, g_{\lambda}^{\mathbf{l}}=-1$ (or of course $g_{\lambda}=-1, g_{\lambda}^{\prime}=1$) or $g_{\lambda}=g_{\lambda}^{\prime}=i \quad(=\sqrt{-1})$.

Many elementary properties of recursive schemes such as (2) are well known and in particular Brother Alfred Brousseau [1] has given some of these in the case when the coefficients are constants.

The question arises as to what happens when we add diagonals to (1) through (1,3) and $(3,1)$ and produce a 5 -diagonal determinant. We shall call a $(2 s+1)$ diagonal determinant (with elements in the main diagonal and the s super-diagonals, and the s sub-diagonals) a continuant of degree s. The recursions followed by these generalized continuants have been studied by H. D. Ursell [2]. In fact, Ursell gives the following table which refers to the order of the difference equation satisfied by a continuant of degree s :

Order of Recurrence Relation									
	1	2	3	4	5	6			
Degree s	2	5	15	49	169	604			
Symmetric Case	2	6	20	70	252	924			
Unsymmetric Case		585							

The rate of increase of the difference equation order is very remarkable.

2. THE FIVE DIAGONAL SYMMETRIC CONTINUANT

We use the notation $K_{s}\left(h_{1}, g_{1}, f_{1}\right)$ for a second-degree symmetric continuant with elements h_{1}, h_{2}, \cdots, in the principal diagonal, g_{1}, g_{2}, \cdots, on the diagonal through $(1,2)$ and $(2,1), f_{1}, f_{2}, \ldots$, on the diagonals through $(1,3)$ and $(3,1)$ and zeros elsewhere. The fifthorder recurrence is then given by (see [3], p. 173, expression (16))

$$
\begin{align*}
& \mathrm{g}_{\mathrm{S}-2} \mathrm{~K}_{\mathrm{S}}=\mathrm{a}_{\mathrm{S}} \mathrm{~K}_{\mathrm{S}-1}-\mathrm{b}_{\mathrm{S}}\left(\mathrm{~g}_{\mathrm{S}-1} \mathrm{~K}_{\mathrm{S}-2}-\mathrm{g}_{\mathrm{S}-2} \mathrm{f}_{\mathrm{S}-2} \mathrm{~K}_{\mathrm{S}-3}\right) \tag{3}\\
& -\mathrm{f}_{\mathrm{S}-3}^{2} \mathrm{f}_{\mathrm{S}-2}{ }^{\mathrm{c}} \mathrm{~S}_{\mathrm{K}}{ }_{\mathrm{S}-4}+\mathrm{f}_{\mathrm{S}-2} \mathrm{f}_{\mathrm{S}-3}{ }^{2} \mathrm{f}_{\mathrm{S}-4} \mathrm{~m}_{\mathrm{S}-1} \mathrm{~K}_{\mathrm{S}-5}
\end{align*}
$$

where $\mathrm{s}=3,4, \cdots$, with

$$
\begin{gathered}
\mathrm{K}_{-2}=\mathrm{K}_{-1}=0, \quad \mathrm{~K}_{0}=1, \quad \mathrm{~K}_{1}=\mathrm{h}_{1}, \\
\mathrm{~K}_{2}=\mathrm{h}_{1} \mathrm{~h}_{2}-\mathrm{g}_{1}^{2}
\end{gathered}
$$

where

$$
\begin{gathered}
\mathrm{a}_{\mathrm{s}}=\mathrm{h}_{\mathrm{s}} \mathrm{~g}_{\mathrm{s}-2}-\mathrm{f}_{\mathrm{s}-2} \mathrm{~g}_{\mathrm{s}-1} \\
\mathrm{~b}_{\mathrm{s}}=\mathrm{g}_{\mathrm{s}-1} \mathrm{~g}_{\mathrm{s}-2}-\mathrm{h}_{\mathrm{s}-1} \mathrm{f}_{\mathrm{s}-2} \\
\mathrm{c}_{\mathrm{s}}=\mathrm{h}_{\mathrm{s}-2} \mathrm{~g}_{\mathrm{s}-1}-\mathrm{f}_{\mathrm{s}-2} \mathrm{~g}_{\mathrm{s}-2}
\end{gathered}
$$

We discuss several special cases.
$2.1 \mathrm{~g}_{1}=\mathrm{g}_{2}=\cdots=\mathrm{g}_{\mathrm{S}-1}=0$. We now have to expand K_{S} by its last row and column since formula (3) aborts. We find
(4) $\quad K_{S}=h_{s} K_{S-1}-f_{s-2}^{2} h_{s-1} K_{s-3}+f_{s-2}^{2} f_{s-3}^{2} K_{s-4} \quad(s=4,5, \cdots)$
with

$$
\begin{gathered}
\mathrm{K}_{0}=1, \\
\mathrm{~K}_{1}=\mathrm{h}_{1}, \\
\mathrm{~K}_{2}=\mathrm{h}_{1} \mathrm{~h}_{2}, \\
\mathrm{~K}_{3}=\mathrm{h}_{2}\left(\mathrm{~h}_{1} \mathrm{~h}_{3}-\mathrm{f}_{1}^{2}\right) .
\end{gathered}
$$

Using (4) we find for the next few cases,

$$
\begin{gathered}
K_{4}=\left(h_{1} h_{3}-f_{1}^{2}\right)\left(h_{2} h_{4}-f_{2}^{2}\right), \\
K_{5}=\left(h_{2} h_{4}-f_{2}^{2}\right)\left(h_{5}\left(h_{1} h_{3}-f_{1}^{2}\right)-h_{1} f_{3}^{2}\right)
\end{gathered}
$$

indicating that K_{S} is the product of two continuants of degree 1 (three diagonals). This is easily seen from the determinant for K_{S} by expanding by sub-matrices consisting of elements from odd rows (and columns). For example,
(5)

$$
\mathrm{K}_{7}=\left|\begin{array}{cccc}
\mathrm{h}_{1} & \mathrm{f}_{1} & 0 & 0 \\
\mathrm{f}_{1} & \mathrm{~h}_{3} & \mathrm{f}_{3} & 0 \\
0 & \mathrm{f}_{3} & \mathrm{~h}_{5} & \mathrm{f}_{5} \\
0 & 0 & \mathrm{f}_{5} & \mathrm{~h}_{7}
\end{array}\right| \quad\left|\begin{array}{ccc}
\mathrm{h}_{2} & \mathrm{f}_{2} & 0 \\
\mathrm{f}_{2} & \mathrm{~h}_{4} & \mathrm{f}_{4} \\
0 & \mathrm{f}_{4} & \mathrm{~h}_{6}
\end{array}\right|
$$

and this type of condensation has been given by Muir [4]. We may verify directly from (4) that K_{S} does in fact factor, and defining first degree continuants
(6a)
(6b)

$$
\begin{aligned}
& K_{S}^{(2)}\left(h_{1}, f_{1}\right)=\left|\begin{array}{llll}
h_{1} & f_{1} & & \\
f_{1} & h_{3} & & \\
& & & f_{2 s-3} \\
& & f_{2 s-3} & h_{2 s-1}
\end{array}\right| \\
& \mathrm{K}_{\mathrm{S}}^{(2)}\left(\mathrm{h}_{2}, \mathrm{f}_{2}\right)=\left\lvert\, \begin{array}{llll}
\mathrm{h}_{2} & \mathrm{f}_{2} & & \\
\mathrm{f}_{2} & \mathrm{~h}_{4} & & \\
& & & \mathrm{f}_{2 \mathrm{~s}-2} \\
& & \mathrm{f}_{2 \mathrm{~s}-2} & \mathrm{~h}_{2 \mathrm{~s}}
\end{array} \mathbf{l s}_{\text {(s) }}\right.
\end{aligned}
$$

it can be demonstrated that

$$
\begin{gather*}
K_{2 s}\left(h_{1}, 0, f_{1}\right)=K_{S}^{(2)}\left(h_{1}, f_{1}\right) K_{s}^{(2)}\left(h_{2}, f_{2}\right) \tag{7}\\
K_{2 s+1}\left(h_{1}, 0, f_{1}\right)=K_{s+1}^{(2)}\left(h_{1}, f_{1}\right) K_{s}^{(2)}\left(h_{2}, f_{2}\right)
\end{gather*}
$$

In particular taking $h_{S}=1, f_{S}=i$ in (4) we see that the sequence $\left(K_{S}\right)$ where

$$
\begin{equation*}
\mathrm{K}_{\mathrm{S}}=\mathrm{K}_{\mathrm{S}-1}+\mathbb{K}_{\mathrm{S}-3}+\mathrm{K}_{\mathrm{S}-4} \quad(\mathrm{~s}=4,5, \cdots) \tag{8}
\end{equation*}
$$

with $\mathrm{K}_{0}=1, \mathrm{~K}_{1}=1, \mathrm{~K}_{2}=1, \mathrm{~K}_{3}=2$, is such that $\mathrm{K}_{2 \mathrm{~s}-1}$ is the product of consecutive Fibonacci numbers whereas $K_{2 s}$ is the square of a Fibonacci number. For example,

$$
\begin{array}{cccccccccc}
\mathrm{s} & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\mathrm{~K}_{\mathrm{S}} & 2^{2} & 2 \cdot 3 & 3^{2} & 3 \cdot 5 & 5^{2} & 5 \cdot 8 & 8^{2} & 8 \cdot 13 & 13^{2}
\end{array}
$$

It is perhaps not surprising to find the characteristic equation of (8) has zeros $\pm \mathrm{i},(1 \pm \sqrt{5}) / 2$, and indeed

$$
\begin{equation*}
\mathrm{K}_{\mathrm{S}}=\frac{(2-\mathrm{i})}{10} \mathrm{i}^{\mathrm{S}}+\frac{(2+\mathrm{i})}{10}(-\mathrm{i})^{\mathrm{S}}+\left(\left(\frac{1+\sqrt{5}}{2}\right)^{\mathrm{S}+2}+\left(\frac{1-\sqrt{5}}{2}\right)^{\mathrm{S}+2}\right) / 5 \tag{9}
\end{equation*}
$$

Again since the characteristic equation has a zero with largest modulus, then

$$
\lim _{\mathrm{s} \rightarrow \infty} \frac{\mathrm{~K}_{\mathrm{s}+1}}{\mathrm{~K}_{\mathrm{s}}}=\frac{1+\sqrt{5}}{2}
$$

2.2 Constant Elements in the Diagonals.

We consider $K_{S}(h, g, f)$ where h, g, f are either unity in modulus, or zero. The following seem to be the most interesting:

Case	h	g	f	
1	0	1	1	
2	1	1	-1	$(\mathrm{i}=\sqrt{-1})$
3	1	i	-1	
4	1	i	1	

Case 1

$$
\mathrm{K}_{\mathrm{s}}=-\mathrm{K}_{\mathrm{s}-1}-\mathrm{K}_{\mathrm{s}-2}+\mathrm{K}_{\mathrm{s}-3}+\mathrm{K}_{\mathrm{s}-4}+\mathrm{K}_{\mathrm{s}-5} \quad \mathrm{~s}=3,4, \cdots
$$

with

$$
\mathrm{K}_{-2}=\mathrm{K}_{-1}=0, \quad \mathrm{~K}_{0}=1, \quad \mathrm{~K}_{1}=0, \quad \mathrm{~K}_{2}=-1
$$

In addition

$$
\begin{array}{rrrrrrrrrrr}
\mathrm{s} & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\mathrm{~K}_{\mathrm{S}} & 2 & 0 & -2 & 3 & 0 & -3 & 4 & 0 & -4 & -3
\end{array}
$$

Characteristic Equation

$$
(x-1)\left(x^{2}+x+1\right)^{2}=0
$$

Roots $\quad x=1, w, w, w^{2}, w^{2}$, where w is a primitive cube root of unity.

Explicit Formula

$$
\mathrm{K}_{\mathrm{s}}=\frac{2}{9}+(1+4 \mathrm{w}+\mathrm{s}(1+2 \mathrm{w}))\left(\frac{\mathrm{w}}{9}\right)^{\mathrm{s}-1}-(1-3 \mathrm{w}+\mathrm{s}(1-\mathrm{w}))\left(\frac{\mathrm{w}}{9}\right)^{2 \mathrm{~s}-1}
$$

from which

$$
\mathrm{K}_{3 \mathrm{~s}}=\mathrm{s}+1, \quad \mathrm{~K}_{3 \mathrm{~s}+1}=0, \quad \mathrm{~K}_{3 \mathrm{~s}+2}=-\mathrm{s}-1
$$

Case 2

$$
\begin{array}{rrrr}
& \mathrm{K}_{\mathrm{S}}=\mathrm{KK}_{\mathrm{S}-1}-2 \mathrm{~K}_{\mathrm{S}-2}-2 \mathrm{~K}_{\mathrm{S}-3}+2 \mathrm{~K}_{\mathrm{S}-4}-\mathrm{K}_{\mathrm{S}-5} \\
\mathrm{~S} & \mathrm{~K}_{\mathrm{S}} & \Delta_{\mathrm{S}} & \left(=\sqrt{\left(\mathrm{K}_{\mathrm{S}}^{2}-\mathrm{K}_{\mathrm{S}-1} \mathrm{~K}_{\mathrm{S}+1}\right)}\right) \\
\cline { 1 - 1 } & \frac{1}{0} & - & \\
1 & 1 & 1 & \\
2 & 0 & 2 & \\
3 & -4 & 4 & \\
4 & -8 & 6 & \\
5 & -7 & 11 & \\
6 & 9 & 19 & \\
7 & 40 & 32 & \\
8 & 64 & 56 & \\
9 & 24 & 96 & \\
10 & -135 & 165 & \\
11 & -375 & 285 & \\
12 & -440 & 490 & \\
13 & 124 & 844 & \\
14 & 1584 & 1454 & \\
15 & 3185 & 2503
\end{array}
$$

Characteristic Roots

$$
\begin{gathered}
\mathrm{x}_{1}=\left(\sqrt{3} \mathrm{e}^{\mathrm{i} \pi / 6}+\sqrt[4]{13} \mathrm{e}^{\mathrm{i} \alpha / 2}\right) / 2, \\
\mathrm{x}_{2}=1 / \mathrm{x}_{1}, \\
\mathrm{x}_{3}=\overline{\mathrm{x}}_{1} \quad \text { (conjugate) }, \\
\mathrm{x}_{4}=1 / \bar{x}_{1}, \\
\mathrm{x}_{5}=1,
\end{gathered}
$$

where $\tan \alpha=3 \sqrt{3} / 5$.
The roots of greatest modulus being complex, "explains" the apparently unpredictable behavior of K_{S}. On the other hand, notice that $K_{S}^{2}-K_{S-1} K_{S+1}$ is always a perfect square, and in fact Δ_{S} follows the recurrence

$$
\Delta_{\mathrm{S}}=\Delta_{\mathrm{S}-1}+\Delta_{\mathrm{S}-2}+\Delta_{\mathrm{S}-3}-\Delta_{\mathrm{S}-4} \quad(\mathrm{~s}=2, \cdots)
$$

with

$$
\Delta_{-1}=0, \quad \Delta_{0}=1, \quad \Delta_{1}=1
$$

and characteristic roots

$$
\begin{aligned}
& x_{1}=-(\sqrt{13}+1+\sqrt{(2 \sqrt{13}-2)}) / 4 \\
& \mathrm{x}_{2}=-(\sqrt{13}+1-\sqrt{(2 \sqrt{13}-2)}) / 4 \\
& \mathrm{x}_{3}=(\sqrt{13}-1+i \sqrt{(2 \sqrt{13}+2)}) / 4 \\
& \mathrm{x}_{4}=(\sqrt{13}-1-\mathrm{i} \sqrt{(2 \sqrt{13}+2)}) / 4
\end{aligned}
$$

in which x_{1} has the greatest numerical value, and $\left|x_{3}\right|=\left|x_{4}\right|=1$. Actually it can be shown that

$$
\lim _{\mathrm{s} \rightarrow \infty} \frac{\Delta_{\mathrm{s}+1}}{\Delta_{\mathrm{s}}}=\frac{\sqrt{13}+1+\sqrt{2(\sqrt{13}-1)}}{4}
$$

Case 3

$$
\mathrm{K}_{\mathrm{S}}=2 \mathrm{~K}_{\mathrm{S}-1}+2 \mathrm{~K}_{\mathrm{S}-4}-\mathrm{K}_{\mathrm{S}-5} \quad(\mathrm{~s}=4,5, \cdots)
$$

with

S	0	1	2	3	4	5	6	7	8	9	10
$\mathrm{~K}_{\mathrm{S}}$	1	1	2	4	10	21	45	96	208	432	933

Characteristic Roots

$$
\begin{gathered}
x_{1}=1 \\
x_{2,3,4,5}=\frac{3 \pm \sqrt{5} \pm \sqrt{(6 \sqrt{5}-2)}}{4}
\end{gathered}
$$

$$
\text { Magnitude of largest root }=(3+\sqrt{5}+\sqrt{(6 \sqrt{5}-2)}) / 4
$$

$$
\lim _{s \rightarrow \infty} \frac{K_{s+1}}{\mathrm{~K}_{\mathrm{s}}}=\frac{3+\sqrt{5}+\sqrt{(6 \sqrt{\overline{5}}-2)}}{4}
$$

$$
=2.1537
$$

Comments (i) K_{S} is always positive

$$
\text { (ii) } \sqrt{\left|\mathrm{K}_{\mathrm{S}+1} \mathrm{~K}_{\mathrm{S}-1}-\mathrm{K}_{\mathrm{S}}^{2}\right|} \text { is an integer. }
$$

Case 4

s	$\mathrm{K}_{\mathrm{S}}=2 \mathrm{~K}_{\mathrm{S}-2}-2 \mathrm{~K}_{\mathrm{s}-3}+\mathrm{K}_{\mathrm{S}-5}$										
	0	1	2	3	4	5	6	7	8	9	10
K_{S}	1	1	2	0	2	-3	5	-8	16	-24	45

Characteristic Roots

$$
\begin{aligned}
x_{1}=1 \quad x_{2,3} & =\frac{-(1+\sqrt{13}) \pm \sqrt{2 \sqrt{13}-2}}{4} \\
x_{4,5} & =\frac{-(1-\sqrt{13}) \pm i \sqrt{2 \sqrt{13}+2}}{4} \\
\lim _{\mathrm{s} \rightarrow \infty} \frac{\mathrm{~K}_{\mathrm{s}+1}}{\mathrm{~K}_{0}} & =-\frac{1}{4}\{(1+\sqrt{13})+\sqrt{2 \sqrt{13}-2}\} \\
& =-1.7221
\end{aligned} .
$$

3. FACTORABLE CONTINUANTS

A number of these have been given by D. E. Rutherford [5], [6]. In particular, Rutherford remarks that the $\mathrm{n}^{\text {th }}$ Fibonacci number can be expressed as
(10)

$$
\prod_{r=1}^{\mathrm{n}-1}\left(1-2 \mathrm{i} \cos \frac{\mathrm{r} \pi}{\mathrm{n}}\right)
$$

Moreover, although he does not give the recurrence relation, he quotes the factors of (in our notation) $\mathrm{K}_{\mathrm{S}}(\mathrm{z}, 2 \mathrm{a}, 1)$, where
as

$$
\frac{1}{2(\cos 2 \alpha-\cos 2 \beta)}\left\{\frac{\sin ^{2}(\mathrm{~s}+2) \alpha}{\sin ^{2} \alpha}-\frac{\sin ^{2}(\mathrm{~s}+2) \beta}{\sin ^{2} \beta}\right\}
$$

where
[Continued on page 634.]

