
LINEAR DIFFERENCE EQUATIONS AND GENERALIZED CONTSNUANTS 
PART I: ALGEBRAIC DEVELOPMENTS 

L..R. SHENTQN 
Computer Center,University of Georgi®, Athens, Georgia 

1. INTRODUCTION 
A continuant detenninant (or matrix) has elements in the diagonals through (1,1), (1* 2), 

and (2,1) only, and zeros elsewhere. We can use the notation K (h^1,) for the s order 
continuant, where 
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As is well known, by expanding this by its las t row and column, we find the recurrence r e l a -
tion (omitting the arguments for brevity) 

(2) K s = h s V l - g . s g s K s _ 2 B - 2 , 3 . » . 

with K0 = 1, Ki = hA. Note that K is unchanged in value if the signs a re changed for any 
s 

subset of the gTs along with the corresponding subset of the g f / s . Again note that the usual 
Fibonacci sequence a r i ses from either g. = 1, g' = -1 (or of course g. = - 1 , g' ^ 1) 
or gx = g'x = i (= \^1) . 

Many elementary propert ies of recursive schemes such as (2) a re well known and in 
part icular Brother Alfred Brousseau [ l ] has given some of these in the case when the coef-
ficients are constants. 

The question a r i se s as to what happens when we add diagonals to (1) through (1,3) and 
(3,1) and produce a 5-diagonal determinant. We shall call a (2s + 1) diagonal determinant 
(with elements in the main diagonal and the s super-diagonals, and the s sub-diagonals) a 
continuant of degree s. The recursions followed by these generalized continuants have been 
studied by H. D. Ursell [2] . In fact, Ursell gives the following table which refers to the o r -
der of the difference equation satisfied by a continuant of degree s: 

Order of Recurrence Relation 

Degree s 
Symmetric Case 
Unsymmetric Case 
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The rate of increase of the difference equation order is very remarkable . 

2. THE FIVE DIAGONAL SYMMETRIC CONTINUANT 

We use the notation K (h1? gl5 fA) for a second-degree symmetric continuant with e le -s 
ments hi , h2, • • • , in the principal diagonal, gi, g2, • • • , on the diagonal through (1,2) and 
(2,1), %, f2, • • • , on the diagonals through (1,3) and (3,1) and zeros elsewhere. The fifth-
order recurrence is then given by (see [3] , p . 173, expression (16)) 

(3) g 0K = a K .. - b (g ,K „ - g _f 0K Q) 
&s-2 s s s-1 s & s - l s-2 &s-2 s-2 s-3 

- f2 0f 0 c K , + f J2
 Qf2 ,g ,K . 

s-3 s-2 s s-4 s-2 s-3 s -4 & s- l s-5 
where s = 3, 4, • • • , with 

-2 

where 
K2 = hxh2 - gt , 

a s = Vs-2 " fs-2gs-l • 
bs = gs-lgs-2 " Vlf8-2 • 
Cs = h s - 2 g s - l " f s - 2 g s - 2 ' 

We discuss several special cases . 
2»1 gj_ = g2 = • • • = g 1 = 0. We now have to expand K by its las t row and column 

S —X S 
since formula (3) aborts . We find 

(4) K = h K - - f2 0h -K o + f2 of2 QK . (s = 4 , 5 , - ) 
x ' s s s-1 s-2 s-1 s-3 s-2 s-3 s-4 
with 

K„ = 1 , 
Ki = hi , 

K2 = hAh2 , 

K3 = h2(hih3 - ff) . 

Using (4) we find for the next few cases , 

K4 = (hih3 - ff)(h2h4 - f2.) , 

K5 = (h2h4 - 4)(h5(hih3 - i) - htfi) 

indicating that K is the product of two continuants of degree 1 (three diagonals). This is 
easily seen from the determinant for K by expanding by sub-matr ices consisting of e le -
ments from odd rows (and columns). For example, 
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(5) K7 

ht fj 0 0 
ft h3 f3 0 
0 f, hK fB 

0 0 £B h, 

h2 f2 0 
k h4 f4 

0 k h6 

and this type of condensation has been given by Muir [4] . We may verify directly from (4) 
that K does in fact factor, and defining first degree continuants 

hi ft 

k h3 

f„ (6a) Kf (h1; ft) 
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(s) 

(s) 
it can be demonstrated that 

(7) K 2 s (h i , 0, fj) = K(f (hi, fi)K^2)(h2, f2) , 

K2 s + 1(hi, 0, ft) = K ^ O i i , fi)42 )(h2, f2) . 

In par t icular taking h = 1 , f = i in (4) we see that the sequence (K ) where 
s s s 

(8) s s-1 s -3 s-4 (s = 4, 5, • • • ) 

with K0 = l j Kf = 1, K2 = I? K3 = 2, is such that K2 - is the product of consecutive 
Fibonacci numbers whereas K0 is the square of a Fibonacci number,, For example, 

zs 

s 4 5 6 7 8 9 10 11 12 
K 22 2-3 32 3-5 52 5«8 82 8-13 132 

s 

It is perhaps not surprising to find the characterist ic equation of (8) has zeros ±i, ( l±V5) /2 , 

and indeed 

(9) K s ~ " T o ^ l + ^0 W «»• * ( (H*f • ( H ^ f ) / • 
Again since the characterist ic equation has a zero with la rges t modulus, then 

s—^oo K 2 
s 
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2.2 Constant Elements in the Diagonals 
We consider K (h, g, f) where 

following seem to be the most interesting: 
We consider K (h, g, f) where h, g, f a re either unity in modulus, or zero. The 

Case h g f 
1 0 1 1 
2 1 1 - 1 (i = V=T) 
3 1 i -1 
4 1 i 1 

Case 1 
K = - K , - K 0 + K Q + K , + K . s = 3, 4, ••• 

s s-1 s~2 s-3 s-4 s-5 ' ' 
with 

K_2 = K_x = 0, K0 = 1, Kt = 0, K, = -1 . 
In addition 

s 3 4 5 6 7 8 9 10 11 12 
K 2 0 - 2 3 0 - 3 4 0 - 4 - 3 

s 
Characterist ic Equation 

(x - l)(x2 + x + l ) 2 = 0 

Roots x = 1, w, w, w2, w2, where w is a primitive cube root of unity. 

Explicit Formula 

Ks -
from which 

Case 2 

2 
9 + c L + 
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= s + l s 

= 2K - -
s-1 

K 
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1 
1 
0 

-4 
-8 
-7 

9 
40 
64 
24 

-135 
-375 
-440 

124 
1584 
3185 

/ w \ S _ 1 . 
2w)) f 2: J - ( l - 3w + s(l - w) 

K3s+1 = 0> K3s+2 = _ S " X 

2K „ - 2K o + 2K A - Ka -
s-2 s-3 s-4 s-5 

/ ' 2̂- -^1-VlVl1 

1 
2 
4 
6 

11 
19 
32 
56 
96 

165 
285 
490 
844 

1454 
2503 

/ \ 2 s - l 
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Characteris t ic Roots 

Xl = ( ^ e i 7 r / 6
 + ^ l 3 e i a / 2 ) / 2 s 

x2 = l/xt 9 

x3 = X! (conjugate) , 

x4 = 1/xt , 

x5 = 1 9 

where tan a = 3 ^ 3/5. 
The roots of greatest modulus being complex, "explains" the apparently unpredictable 

behavior of K . On the other hands notice that K2 - K -K , n is always a perfect square5 
S S S-*J. S"J"X 

and in fact A follows the recurrence 
s 

A s = V l + V2
 + A s - 3 ' A s _ 4 (s = 2, • • • ) 

with 
A_1 = 0, A0 = l , At = 1 , 

and character is t ic roots 
x4 = - (<s/l3 + 1 + ^(2\ll3 - 2) J / 4 , 

x2 = - (*JT5 + 1 - V(2Vl3 - 2 ) ) / 4 , 

x3 = ( \ / l 3 - 1 + i V ( 2 N / 1 3 + 2 ) ) / 4 , 

x4 = ( \ / l 3 - 1 - i V ( 2 N / 1 3 + 2 ) ) / 4 , 

in which xA has the greatest numerical values and | x3| = | x4| = 1, Actually it can be shown 
that 

Case 3 

r A s * l = N/13 + 1 + V2W13 - 1) 
s i ^ o o A 4 

s 

K g = 2 * ^ + 2Kg_4 - K g _ 5 (s = 4, 5 , . . - ) 

with 
S 0 1 2 3 4 5 6 7 8 9 10 

K 1 1 2 4 10 21 45 96 208 432 933 
s 

Characteris t ic Roots 
Xi = 1 

- 3 ± N/5 ±. V ( 6 N / 5 - 2)" X2,3S4S5 *-£-* 

Magnitude of larges t root = f 3 + N/5> + \ ( 6 V5 - 2) J / * 

lim K s + 1
 = 3 + N/5 + V ( 6 N / 5 - 2) 

s—-**oc K 4 
s 

= 2,1537 
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Comments (i) K is always positive 

Dec. 1972 

ai) y 
Case 4 

s 0 

K s 1 

Characterist ic Roots 

o 

IK 

1 

1 

s-KLKs-l ™ K s ! is an integer. 

K = 2 K „ - 2K . 0 + K K s s-2 s -3 s-5 
2 3 4 5 6 7 

2 0 2 - 3 5 - 8 

8 

16 

9 

-24 

10 

45 

Xi = 1 X 2 j 3 = 

x 4 . 5 

-(1 + 

-(1 -

N/13) 

N/13 ) 

± V2N/13 -
4 

± i V 2 ^ 1 3 

- 2 

+ 2 

K s+1 l im Tr 
s—•<» K0 

| ](1 + N / 1 3 ) + V2«s/13 - 2^ 

-1.7221 

3. FACTORABLE CONTINUANTS 

A number of these have been given by D. E. Rutherford [5], [6], In part icular , 
Rutherford remarks that the n Fibonacci number can be expressed as 

(10) jfj^-Hcos?) 

Moreover, although he does not give the recurrence relation, he quotes the factors of (in our 
notation) K (z, 2a, 1), where 

z, 2a, 1, 

^a, z, z«i, x, 

1, 2a, z, 2a, 1, 

1, 2a, z, 2a, 1, 
K = s 

1, 2a, z (s) 

as 

2(cos 2a - cos 2j3) 
j sin2 (s + 
( sin2# 

2)a _ sin2 (s + 2)j3 
sin2j3 

where 
[Continued on page 634. ] 


