where ${ }_{2} \mathrm{~F}_{1}[\mathrm{a}, \mathrm{b} ; \mathrm{c} ; \mathrm{x}]$ denotes the hypergeometric function.

Comment on H-193.

The proposer has pointed out that the stated condition does hold for the following examples.

```
Examples: }\quad5+1+1=7=\mp@subsup{2}{}{3}-1,\quad\mp@subsup{5}{}{3}+\mp@subsup{1}{}{3}+\mp@subsup{1}{}{3}=127=\mp@subsup{2}{}{7}-1\mathrm{ ,
            19+11+1=31=25-1, 193 + 11 3 + 1 = = 8191 = 2 23}-1
    79+29+19=127=2 2 - 1, 79 + 29 3 + 193 = 524287 = 2 29 - 1.
```

The validity of the statement would be a pleasant surprise.

$\underline{\text { Late Acknowledgements }}$

H-183 P. Lindstrom, D. Klarner, S. Smith, D. Priest, and L. Carlitz.

Notice: The editor would be happy to override the "two months after publication" clause for solutions of problems prior to H-180, for which no solutions have been published. The next issue will contain a complete list of unresolved problems. Please send your solutions!
[Continued from page 590.]

$$
\begin{aligned}
2 \alpha & =\theta-\psi, & 2 \beta & =\theta+\psi \\
\mathrm{x} & =2 \cos \theta, & \mathrm{y} & =2 \cos \psi, \\
\mathrm{z} & =\mathrm{xy}+2, & \mathrm{a} & =\frac{1}{2}(\mathrm{x}+\mathrm{y})
\end{aligned}
$$

We shall consider the asymmetric five diagonal determinant on another occasion.

REFERENCES

1. Brother Alfred Brousseau, "Lesson Eight - Asymptotic Ratios in Recurrence Relations," Fibonacci Quarterly, Vol. 8, No. 3, 1970, p. 311.
2. H. D. Ursell, "Simultaneous Recurrence Relations with Variable Coefficients," Proc. Edinb. Math. Soc. , Vol. 9, Pt. IV, p. 183, 1958.
3. R. L. Shenton, "A Determinantal Expansion for a Class of Definite Integral ," Proc. Edinb. Math. Soc., Vol. 10, Part IV, p. 167, 1957.
4. Thomas Muir, "Note on the Condensation of a Special Continuant," Proc. Edinb. Math. Soc., Vol. II, pp. 16-18, 1884.
5. D. E. Rutherford, "Some Continuant Determinants Arising in Physics and Chemistry," Proc. Roy. Soc. Edinb., Vol. LXII, p. 229, 1947.
6. D. E. Rutherford, "Some Continuant Determinants Arising in Physics and Chemistry," Proc. Roy. Soc. Edinb. , Vol. LXIII, p. 232, 1952.
