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INTRODUCTION 

If the elements of continued fraction-oriented physical and mathematical systems are 
systematically arranged with respect to subscripts attached to the elements, the choice of 
order and parity for the subscripts often leads to easily implemented algorithms for the com-
binatorial determination of the subscripts. All the essential information of the problem can 
be carr ied by the subscripts since integer manipulation of the subscripts can substitute for 
algebraic manipulation of the elements of the system. Specific and general sets of subscripts 
a re discussed, together with the application of Fibonacci methods for the counting of members 
of subscript sets . 

2. "BASIC" SUBSCRIPT SETS AND THEIR GENERATION 

The Euler-Minding formulas are introduced early in PerronTs classic nDie Lehre von 
den Kettenbriichen" [l] and figure prominently in much of the subsequent continued fraction 
discussions. If Perron1 s notation is altered slightly to eliminate (for convenience) the zero 
subscript, the Euler-Minding formulas appear as 

Sn = a i a 2 
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There are -^ summations plus the one in the parentheses of (1) and —^— summations 
plus the one in the parentheses of (2).* 

* The brackets specify the largest integer less than or equal to the number bracketed. 
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By letting the cfs of (1) and (2) assume particular values, the ratio S / T can be 
used to describe various rational fraction forms of continued fractions some of which are 
directly related to physical s t ructures . For example, if the cfs are all equal to one, the 
ratio S^ / T is the rational fraction equivalent of the continued fraction [l] 

(3) 
a2 + a3 + a n -1 

More concretely, for n equal five, 

(4) 

* i a2 + a3 + a5 

a5a4a3a2a1 + (a5a4a3 + a5a4a1 + aba2a^ + a3a2a1) + (a5 + a3 + at) 

Salzer [2] in an interpolation problem sets all cfs equal to (x - Xj) in the ratio S / T
n _ 1 

and uses the continued fraction process to retr ieve al3 a2, a • •. As a further example, by 
letting the c 's equal the complex frequency variable s = a + jo>, the impedance or admit-
tance of two-element kind electrical ladder networks can be described by S / T -. For in-
stance, the resistance-capacitance network 

-te 
— farads a2 

H(-
a4 

farads 

Y RC ( S ) ohms - - ohms 
a 3 

ohms 

has the Sn / T 1 ratio [3] 

(5) Y R C (s) = 
(a5 + a3 + a t ) s 4 + (a5a4a3 + a5a4aA + a5a2ax + a3a2ax)s2 + a5a4a3a2a! 

s4 + (a5a4 + a5a2 + a3a2)s2 + a5a4a3a2 

It is seen that the ascending subscript arrangement in the continued fraction of (4) and 
in the physical network above both lead to rational fractions having numerators and denomin-
ators with sums of products of n or less coefficients with the sums of products of no coef-
ficients being interpreted as the numeric one. Features immediately apparent with each 
sum of h coefficients are the lexicographical order of subscripts , the absence of repeats , 

• a, and the presence of a leading a a a - , and a final a, a, a i o r VA 2 " 
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It is seen that equationwise all the information needed for the construction of the rational 
fraction is contained in the subscripts alone. 

The subscripts of the coefficients of a sum of products of h coefficients thus constitute 
a subscript set« The numerator and denominator of the rational fraction can thereby be r ep -
resented as a collection of subscript se ts . Because of the basic nature of (3) and because of 
the basic role played by the subscripts exemplified by (4) in specifying propert ies of more 
general subscript se ts , the subscripts of a sum of products of h coefficients determined 
from a continued fraction as in (3) are called basic subscript sets and are given the symbol 
\ N } where n is the larges t subscript of the set, h is the number coefficients in each n 0 

product, and the 0 subscript on th£ braces idantifies the set as "basic. M A typical basic 
subscript set from (4) is ( 5 , 4, 3; 5, 4, 1; 5, 2, 1; 3, 2, l } . 

What are the precise propert ies of basic subscript se ts? How can they be generated 
easily, and what is the power of a basic subscript set? A discussion follows. 

Consider a sequence of h non-zero, non-repeating integers , called subscripts. The 
subscripts in the sequence are arranged in alternating parity and descending size with the 
la rges t subscript (on the left) assigned a specific parity. A basic subscript set has as mem-
bers all possible such sequences with the larges t subscript in any sequence not exceeding n. 
The subscript sets are represented as 

n /2 
(6) {NJJ} = |T] (n - 2f), {Nj"J f _ 1 } , n even, 

f»0 

(n- l ) /2 
(7) {N^}o= 0 (n-2f) , {NfcJ^} 

f=0 
n odd 

\ N 0 } stands for no subscripts and is associated with the numeric one or a single term with 
n o — r ki 

no coefficients. (See, for example, the denominators of (4) and (5).) \N } for k > n is 
,—, n o 

the null set with no value. The boxed semicolon |; | i s a symbol for collecting the sequences 
of a subscript set. 

If n is odd (even), the largest subscript of any sequence has odd (even) parity. The 
smallest subscript of any sequence has odd (even) parity if n - h + 1 is odd (even). 

From (6) and (7), it can be determined that the starting* sequence-last sequence pair 
of ( N } assume either (8) and (9) or (10) and (11). 

(8) n, n - 1, n - 2, • • • , n - h + 1 

(9) h, h - 1, h - 2, ••• , 1 
n - h + 1 odd 

*No other sequence with the prescribed propert ies can be found which has a la rger subscript 
in a given position than the subscript in that position in the starting sequence. If ' l e s s thann 

is substituted for " larger than,1' the las t sequence is described. 



1973] A DISCUSSION OF SUBSCRIPT SETS WITH SOME FIBONACCI COUNTING HELP 423 

(10) n, n - 1, n - 2, ° ° • , n - h + 1] 

(11) h + 1, h, h - 1, ••• , 2 
I , n - h + 1 even 

Note that the difference between given position subscripts in the starting and las t sequences 
is a constant q, where q = (n - h) for (n - h) + 1 odd and q = (n - h - 1) for (n - h) + 1 
even. In either case , q is even. This is a property which is valid for the more general 
subscript sets discussed la ter . 

An algorithm to generate basic subscript sets can be deduced from an inspection of (1) 
and (2) once the starting and las t sequence have been established. Assume that the f mem-

st ber of a subscript set is known. To find the (f + 1) member , s tar t at the right side of the 
f member and scan the subscripts toward the left until the f irst subscript is found which 
has a value of at least two greater than the corresponding position subscript of the last s e -

s t quence. Subtract two from this subscript to obtain the subscript for the (f + 1) member 
s t 

and complete the (f + 1) member by filling all positions to the right with the la rges t pos-
sible subscripts consistent with s ize-order and position parity. Note that subtraction of 
twofs is necessary to retain position parity. 

The implementation of the algorithm is even simpler than the description as is i l lus-
trated in the "by hand" generation of { N 8 } in (12). 

(12) 

8, 7, 4, 3' 3, 5, 4, 3 , 3, 2, 1 6, 5, 2, 1 

What is the power of a basic subscript se t? It can be shown by comparison with a physi-
cal model that the power of the collection of either numerator subscript sets or denominator 
subscript sets is Fibonaccian and this , in turn, provides a clue to the answer. 

It is well established [4] - [6] that the resistance o r conductance of electrical ladder 
networks has as the ratio of numerator t e rms to denominator t e rms a ratio of Fibonacci num-
bers . For example, if a ladder network is composed of n unit conductances with a shunt 
conductance at the input end and either a shunt conductance (n odd) or a short circuit (n even) 
at the output end, the conductance measured at the input terminals is given by* 

* Several other forms in t e rms of resistance or conductance a r e , of course, possible,. For 
example, Basin [6] states the input resistance of the dual of the above network with n even 
a s F2n+1 /F2n* However, Basinfs n is half the n of this paper because of a choice in size 
of his unit network. 
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F 
(13) Gn = - | i i mhos , 

n 

where F l 9 F2 , F3 , F 4 , ••• = 1, 1, 2, 3, ••• a re the well-known Fibonacci numbers. More-
over, if the shunt a rms of the ladder network are replaced and described by odd subscripted 
admittances (yfs) and the ser ies a r m s are replaced and described by even subscripted im-
pedances (z's) with the numbering increasing away from the input terminals , (4) exemplifies 
the continued fraction and rational fraction form of the input admittance. To complete the 
identification, odd subscripted a ' s of (4) are interpreted as yTs, and even subscripted a !s 
are interpreted as zTs. It can be seen that the power of a collection of basic subscript sets 
is given by 

UN11"1} + {Nn-3} + •. • + {N0} I = UN11-1} I + |{Nn-3} I + • • • + |{N0} I 11 n J
0
 l n J

0
 l n J

0 ' | l n J
0 > l l n J

0 ' | l n J
0 ' 

(14) = | { N
n - l } + { N n - 3 } + . . . + { N 0

n } I 

(15) = \{Nn-]} +{Nn"3} + - . . +IN 1 J I 
I"- n - l J

0
 l n - l J

0
 l n - l J

0 ' 

= K N n " i } I + K N n i } I + ••• + KN 1 J I = F . n e v e n . |L n - l J
0
 ! |l- n - l J

0 I |l- n - l J
0
 ! n 

That \N } might be equal to a Fibonacci-related binomial coefficient is suggested in a n 0 

paper by Raab [9] in this Journal. Eaab shows that by selecting the entr ies of a certain d i -
agonal of the Pascal triangle a r ray , the Fibonacci numbers are given by 

'.- s (n-i-*> (16) 
5=0 

However, Per ron [l] l is ts t e rm-by- te rm the identical binomial coefficients obtained in the 
expansions of (1) and (2). This verif ies, as was suspected, that 

(17) | { < } o 
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3. GENERAL SUBSCRIPT SETS 

It is apparent that the basic subscript sets belong to a more general class of subscript 
se ts . Consider a set of all possible sequences of h, non-zero, non-repeating, positive inte-
gers called subscripts , having the propert ies that no subscript exceeds M o r i s l ess than 
m and that each sequence within a set has the same pari ty order . Let it be further specified 
that each sequence be arranged in descending size order from left to right. Thus, there is a 
unique starting sequence and a unique las t sequence. The leftmost position of the starting 
sequence is occupied by a subscript <M (depending on mutual pari t ies) , and the remaining 
(h - 1) positions a re filled with the largest subscripts possible consistent with s ize-order and 
parity. Similarly, the rightmost position of the last sequence is occupied by a subscript 
^ m (depending on mutual pari t ies) , and the remaining (h - 1) positions are occupied by the 
smallest consistent subscripts. For example, if h = 6, M = 20, m = 3 and position pa r -
ity i s even, odd, even, even, even, even, the starting sequence must be 20, 19, 18, 16, 14, 
12, and the last sequence must be 12, 11, 10, 8, 6, 4. Because the position parity must 
be the same for the starting and las t sequence and because of the compacting of subscripts to 
the left in the starting sequence and to the right in the last sequence, the difference between 
the same position subscripts within the starting and last sequences is the same. From this 
fact, it can be seen that there is a constant difference q between corresponding position 
subscripts in the starting and las t sequences, and moreover , q must be even as the resul t 
of position parity. Once a starting and las t sequence are determined, the generation of sub-
scr ipt sets in general follows the algorithm given for basic subscript sets . Of course , parity 
must be str ict ly observed. 

While (17) applies in part icular to basic subscript sets and is useful for counting them 
without f irs t determining the starting and las t sequences, i t is possible to use (17) to obtain a 
new form suitable for counting all subscript se ts . 

Consider | { N } I. If n and h are both odd or both even (i. e. , n + h is even), n o' 

(18) [^il] = - h . 

Since the las t member of the starting sequence is (n - h + 1), it must be odd. This makes q 

(19) q = (n - h + 1) - 1 = (n - h) . 

If n is odd and h even or vice versa (i. e. , n + h is odd), 

(20) [ift] - BJJ^I 

In this case , the value of q is 

(21) q = (n - h + 1) - 2 = (n - h - 1) . 
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Elimination of n between either (18) and (19) or between (19) and (20) resul ts in the single 
equation 

™ <"n>„ - (h V f ) 
which is independent of n and the parity of (n + h). 

Next, consider the sequences of differences between any sequence and the las t sequence 
of \ N } . This set of differences s ta r t s with a sequence of h q f s , (q, q, q, • • • , a) and 

n 0 — -* 
ends with the sequence of h zeros (0, 0, 0, • •• , 0). The same algorithm applied to the 
sequence of differences produces members of the difference set in one-to-one correspondence 
with the members of the basic subscript set, and thereby (22) is applicable for counting them. 
However, a little reflection reveals that the same (q, q, q, • • • , q) to (0, 0, 0, ••• , 0) 
sequences apply to any subscript set having the given q and h. Thus, (22) can be recas t 
more generally as 

**„ - (h u 2 ) • 
4. SOME USEFUL NON-BASIC SUBSCRIPT SETS 

It was noted ear l ie r that \N } provided subscripts for a sum of products of coefficients 
n o 

such as a a a • • • (see (4)). If the even subscripted a fs represent one kind of item (as in 
(5)) and the odd subscripted aTs represent another, the sequences of the basic subscript set 
represent sums of products of kinds of things in a fixed alternation pattern. For example, in 
another of the physical systems described ear l ie r , the odd subscripted aTs were shunt a rm 
admittances (yTs) and the even subscripted a fs were se r ies a rm impedances (zTs). In the 
case of a lumped element ladder network, a product has a specific • • • zyz- • • order . In the 
study of certain cascaded distributed element transmission systems, a mathematical inter-
action takes place which, in effect, keeps the • • • zyz* • • order the same but introduces addi-
tional sums of products in which even subscript positions replace some or all of the former-
ly odd subscript positions of the basic subscript set [10], [ l l ] . 

Let \ N } be a subscript set whose subscripts describe the same element product o r -
der as is described by the basic subscript set but whose sequences each have i of the odd 
subscript positions of {N } replaced by i even subscript.positions. If g is the number 
of odd parity positions in a sequence of \N } , there are I J J distinct types of parity a r -
rangement for the sequences of { N } . To obtain { N }, it is feasible to form f^ j sub-
sets each having its own starting sequence and las t sequence. The subsets are designated 
{ N / , {N } , etc. , and are generated and or counted just like any subscript set. Let 
the position of the rightmost odd subscript of { N } be designated odd position 1, next on the 
left odd position 2, etc. , up to and including g. Determine the names of the 1 j J combina-
tions of the odd position numbers 1, 2, • • • , g taken i at a t ime. For each combination of 
odd position numbers , the sequences of the subsets have the parity arrangement of \N } 

n o 
except for i former odd subscript positions replaced by i even subscript positions. The 
subscripts of the starting sequence should be as large as consistently possible and those of 
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the last sequence as small as consistently possible. While the power of the individual sub-
sets can be found from (23), the power of { N } is given by 

(24) {Nh} 

5. DERIVATION OF ^MAX 

For the physical systems which utilize \N } , the value of i for each h is of 
n £ max 

great use in determining the number of coefficients, and hence size, of governing equations. 
Certainly i cannot exceed g and there are many possible situations in which ^ m a x 

cannot even equal g. It is shown below, in fact, that I is equal to the l e s se r of q/2 or 
i max 

g of {N^} Q . 
The starting and last sequences, respectively, of { N / o take on either of the two forms 

given by (8), (9) or (10), (11). Since corresponding position subscripts are of the same parity, 
n and h in (8) and (9) can be either both even or both odd. In (10) and (11), if n is even, h 
is odd, and if n is odd, h is even. 

(a) n ,h both even (Eqs. (8) and (9)). There are h/2 even and h/2 = g odd subscripts 
in any sequence. If n ^ 2h, there are exactly (equals sign) o r more than h even subscripts 
available between n and 1 (including n). Thus, if n - h = q is divided by two, and there-
by q/2 > h /2 , a sequence with all even subscripts can be found. Thus i is not limited 
by q/2 since h/2 odd positions have been filled with even subscripts. If n < 2h, there 
are less than h even subscripts available between n and 1 (including n). This is reflected 
by q/2 < h /2 . The value for ^ m a x must be q/2. 

(b) n,h both odd (Eqs. (8) and (9)). There are (h - l ) /2 even and (h + l ) /2 = g odd 
subscripts in any sequence. If n > 2h + 1, there are exactly (equals sign) or more than h 
odd subscripts between n and 1 (exclusive of 1). Thus, if q/2 > (h + l ) / 2 , there are at 
leas t h odd subscripts between n and 1 (exclusive of 1) which can be reduced by one to 
give at least h even subscripts. Such a sequence would have (h + l ) /2 former odd positions 
filled by even subscripts. Therefore, ^ m a x is not limited by q/2 since (h + l ) /2 odd 
positions have been filled by even subscripts. If q/2 < (h + l ) / 2 , the value for i m a x must 
be q/2. 

(c) n even, h odd (Eqs. (10) and (11)). There a re (h + l ) /2 even and (h - l ) /2 = g 
odd subscripts in any sequence. If n > 2h, there are h distinct even subscripts between n 
and 2 (including n and 2). The condition can be arranged as n - 1 > 2h - 1 or n - 1 - h 
> h - 1 or (n - 1 - h)/2 > (h - l ) / 2 , where (n - 1 - h) = q. Since fulfillment of this con-
dition fills (h - l ) /2 odd positions with even subscripts, i m a x is not limited by q/2. If 
q/2 < (h - l ) / 2 , the value for i m a x must be q/2. 

(d) n odd, h even (Eqs. (10) and (11)). There a re h/2 even and h/2 = g odd sub-
scripts in any sequence of the basic set. If n > 2h + 1 there a re exactly (equals sign) or 
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more than h odd subscripts between n and 2 (including n) which can be reduced by one 
to give at least h even subscripts. Therefore, n - h - 1 > h, (n - h - l ) /2 ^ h /2 , and 
i m a x is not limited by q/2. If q/2 < h / 2 , the value for ^ m a x must be q/2. 

From (a), (b), (c), and (d), it is seen that in all cases q/2 is the value for i , if 
q/2 is l ess than or equal to g, the number of odd positions in a sequence, and g is the 
value for i m a x if q/2 is grea ter than or equal to g. A sufficient condition for q/2 to be 
the greatest - ^ m a x for a given n and any h occurs when q/2 = g. 

8765 
8763 
8761 
8743 
8741 

w, 
8721 
8543 
8541 
8521 
8321 

6. EXAMPLE OF {N h } 1 n J i 

6543 
6521 
6521 
6321 
4321 

(N4
8} !{NJ} 
8 1,1 1 ° 1,2 

8764 i 8643 
8762 | 8641 
8742 I 8621 
8542 | 8421 
6542 | 6421 

{ N , . > , 
8642 

5. 
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