FIBONACCI NOTES
 3: q-FIBONACCI NUMBERS

L. CARLITZ*

Duke University, Durham, North Carolina 27706

1. It is well known (see for example [2, p. 14] and [1]) that the number of sequences of zeros and ones of length n :
(1.1)

$$
\left(a_{1}, a_{2}, \cdots, a_{n}\right) \quad\left(a_{i}=0 \text { or } 1\right)
$$

in which consecutive ones are forbidden is equal to the Fibonacci number F_{n+2}. Moreover if we also forbid $a_{1}=a_{n}=1$, then the number of allowable sequences is equal to the Lucas number L_{n-1}. More precisely, for the first problem, the number of allowable sequences with exactly k ones is equal to the binomial coefficient

$$
\binom{n-k+1}{k} ;
$$

for the second problem, the number of sequences with k ones is equal to

$$
\binom{n-k+1}{k}-\binom{n-k-1}{k-2}
$$

We now define the following functions. Let

$$
\begin{equation*}
f(n, k)=\Sigma q^{a_{1}+2 a_{2}+\cdots+n a_{n}} \tag{1.2}
\end{equation*}
$$

where the summation is extended over all sequences (1.1) with exactly k ones in which consecutive ones are not allowable. Also define

$$
\begin{equation*}
g(n, k)=\Sigma^{\prime} q^{a_{1}+2 a_{2}+\cdots+n a_{n}} \tag{1.3}
\end{equation*}
$$

where the summation is the same as in (1.2) except that $a_{1}=a_{n}=1$ is also forbidden. We shall show that

$$
f(n, k)=q^{k^{2}}\left[\begin{array}{c}
n-k+1 \tag{1.4}\\
k
\end{array}\right]
$$

and
(1.5)

$$
g(n, k)=q^{k^{2}}\left[\begin{array}{c}
n-k+1 \\
k
\end{array}\right]-q^{n+(k-1)^{2}}\left[\begin{array}{c}
n-k-1 \\
k-2
\end{array}\right]
$$

where

$$
\left[\begin{array}{l}
n \tag{1.6}\\
k
\end{array}\right]=\frac{\left(1-q^{n}\right)\left(1-q^{n-1}\right) \cdots\left(1-q^{n-k+1}\right)}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{k}\right)}
$$

the q-binomial coefficient.
These results suggest that we define q-Fibonacci and q-Lucas numbers by means of

$$
\begin{align*}
& F_{n+1}(q)=\sum_{2 k \leqslant n} q^{k^{2}}\left[\begin{array}{c}
n-k \\
k
\end{array}\right] \tag{1.7}\\
& L_{n}(q)=F_{n+2}(q)-q^{n} F_{n-2}^{\prime}(q), \tag{1.8}
\end{align*}
$$

where
*Supported in part by NSF Grant GP-17031.

$$
F_{n+1}^{\prime}(q)=\sum_{2 k \leqslant n} q^{(k+1)^{2}}\left[\begin{array}{c}
n-k \tag{1.9}\\
k
\end{array}\right]
$$

It follows from the definitions that

$$
\left\{\begin{array}{l}
F_{n+1}(q)-F_{n}(q)=q^{n-1} F_{n-1}(q) \tag{1.10}\\
F_{n+1}^{\prime}(q)-F_{n}^{\prime}(q)=q^{n+1} F_{n-1}^{\prime}(q)
\end{array}\right.
$$

Thus
(1.11)

$$
L_{n}(q)=F_{n+1}(q)+q^{n}\left(F_{n}(q)-F_{n-2}^{\prime}(q)\right) .
$$

However, $L_{n}(q)$ does not seem to satisfy any simple recurrence.
2. For the first problem as defined above it is convenient to define $f_{j}(n, k)$ as the number of allowable sequences with exactly k ones and $a_{n}=j$, where $j=0$ or 1 . It then follows at once that

$$
\begin{gather*}
f_{0}(n, k)=f_{Q}(n-1, k)+f_{1}(n-1, k) \quad(n>1) \tag{2.1}\\
f_{1}(n, k)=q^{n} f_{0}(n-1, k-1) \quad(n>1) .
\end{gather*}
$$

Also it is clear from the definition that

$$
\begin{equation*}
f(n, k)=f_{0}(n, k)+f_{1}(n, k) \tag{2.3}
\end{equation*}
$$

Hence, by (2.1),
(2.4)

$$
f(n, k)=f_{0}(n+1, k)
$$

Combining (2.1) and (2.2) we get

$$
\begin{equation*}
f_{0}(n, k)=f_{0}(n-1, k)+q^{n-1} f_{0}(n-2, k-1) \quad(n>2) . \tag{2.5}
\end{equation*}
$$

This formula evidently holds for $k=0$ if we define $f(n,-1)=0$. It is convenient to put
(2.6)

$$
f_{0}(0, k)= \begin{cases}1 & (k=0) \\ 0 & (k>1) .\end{cases}
$$

Also, from the definition,

$$
f_{0}(1, k)= \begin{cases}1 & (k=0 \tag{2.7}\\ 0 & (k>1)\end{cases}
$$

and
(2.8)

$$
f_{0}(2, k)=\left\{\begin{array}{ll}
1 & (k=0) \\
q & (k=1) \\
\dot{0} & (k>1)
\end{array} .\right.
$$

It follows that (2.5) holds for $n \geqslant 2$.
Now put

$$
\begin{equation*}
\Phi(x, y)=\sum_{n, k=0}^{\infty} f_{0}(n, k) x^{n} y^{k} \tag{2.9}
\end{equation*}
$$

Then, by (2.6), (2.7) and (2.5),

$$
\begin{aligned}
\Phi(x, y) & =1+x+\sum_{n=2}^{\infty} \sum_{k}\left\{f_{0}(n-1, k)+q^{n-1} f(n-2, k-1)\right\} x^{n} y^{k} \\
& =1+x \Phi(x, y)+q x^{2} y \Phi(q x, y)
\end{aligned}
$$

so that
(2.10)

$$
\Phi(x, y)=\frac{1}{1-x}+\frac{q x^{2} y}{1-x} \Phi(q x, y) .
$$

Iteration of (2.10) leads to the series
(2.11)

$$
\Phi(x, y)=\sum_{k=0}^{\infty} \frac{q^{k^{2}} x^{2 k} y^{k}}{|x|_{k+1}}
$$

where

$$
(x)_{k+1}=(1-x)(1-q x) \cdots\left(1-q^{k} x\right) .
$$

Since
where

$$
\frac{1}{(x)_{k+1}}=\sum_{s=0}^{\infty}\left[\begin{array}{c}
k+s \\
k
\end{array}\right] x^{s}
$$

$$
\left[\begin{array}{c}
k+s \\
s
\end{array}\right]
$$

is defined by (1.6), it follows that

$$
\begin{aligned}
\Phi(x, y) & =\sum_{k=0}^{\infty} q^{k^{2}} x^{2 k} y^{k} \sum_{s=0}^{\infty}\left[\begin{array}{c}
k+s \\
s
\end{array}\right] x^{s} \\
& =\sum_{n=0}^{\infty} \sum_{2 k \leqslant n} q^{k^{2}}\left[\begin{array}{c}
n-k \\
k
\end{array}\right] x^{n} y^{k} .
\end{aligned}
$$

Comparison with (2.9) gives
(2.12)

$$
f_{0}(n, k)=q^{k^{2}}\left[\begin{array}{c}
n-k \\
k
\end{array}\right]
$$

Therefore, by (2.4),

$$
f(n, k)=q^{k^{2}}\left[\begin{array}{c}
n-k+1 \tag{2.13}\\
k
\end{array}\right]
$$

3. If we put
it is evident that

$$
\begin{equation*}
f(n)=\sum_{2 k \leqslant n+1} f(n, k) \tag{3.1}
\end{equation*}
$$

$$
f(n)=\Sigma q^{a_{1}+2 a_{2}+\cdots+n a_{n}}
$$

where the summation is over all zero-one sequences of length n with consecutive ones forbidden. This suggests that we define

$$
F_{n+1}(q)=f(n-1)=\sum_{2 k \leqslant n} q^{k^{2}}\left[\begin{array}{c}
n-k \tag{3.2}\\
k
\end{array}\right] \quad(n \geqslant 0)
$$

We may also define
The next few values are

$$
F_{0}(q)=0, \quad F_{1}(q)=1
$$

$$
\begin{gathered}
F_{2}(q)=1, \quad F_{3}(q)=1+q \\
F_{4}(q)=1+q+q^{2}, \quad F_{5}(q)=1+q+q^{2}+q^{3}+q^{4} \\
F_{6}(q)=1+q+q^{2}+q^{3}+2 q^{4}+q^{5}+q^{6} \\
F_{7}(q)=1+q+q^{2}+q^{3}+2 q^{4}+2 q^{5}+2 q^{6}+q^{7}+q^{8}+q^{9} .
\end{gathered}
$$

It is evident from the above that $F_{n}(1)=F_{n}$, the ordinary Fibonacci number. To get a recurrence for $F_{n}(q)$ we use

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]=q^{n-k}\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]+\left[\begin{array}{c}
n-1 \\
k
\end{array}\right] .
$$

Then, by (3.2),

$$
\begin{aligned}
F_{n+1}(q)-F_{n}(q) & =\sum_{k} q^{k^{2}}\left(\left[\begin{array}{c}
n-k \\
k
\end{array}\right]-\left[\begin{array}{c}
n-k-1 \\
k
\end{array}\right]\right)=\sum_{k} q^{k^{2}} \cdot q^{n-2 k}\left[\begin{array}{c}
n-k-1 \\
k-1
\end{array}\right] \\
& =q^{n-1} \sum_{k} q^{(k-1)^{2}}\left[\begin{array}{c}
n-k-1 \\
k-1
\end{array}\right]=q^{n-1} \sum_{k} q^{k^{2}}\left[\begin{array}{c}
n-k-2 \\
k
\end{array}\right],
\end{aligned}
$$

so that

$$
\begin{equation*}
F_{n+1}(q)=F_{n}(q)+q^{n-1} F_{n-1}(q) \quad(n \geqslant 1) . \tag{3.4}
\end{equation*}
$$

This of course reduces to the familiar recurrence $F_{n+1}=F_{n}+F_{n-1}$ when $q=1$.
It follows easily from (3.4) that $F_{n}(q)$ is a polynomial in q with positive integral coefficients. If $d(k)$ denotes the degree of $F_{k}(q)$ then $d(1)=d(2)=0, d(3)=1, d(4)=2, d(5)=4, \cdots$. Generally it is clear from (3.4) that

$$
\begin{equation*}
d(n+1)=n-1+d(n-1) \quad(n>1) \tag{3.5}
\end{equation*}
$$

Thus

$$
\begin{gathered}
d(2 n+1)=2 n-1+d(2 n-1), \quad d(2 n)=2 n-2+d(2 n-2), \\
d(2 n+1)=n^{2}, \quad d(2 n)=n(n-1) .
\end{gathered}
$$

which yields
(3.6)

If we replace q by q^{-1} we find that

Hence

$$
\left[\begin{array}{c}
n \\
k
\end{array}\right] \rightarrow q^{k^{2}-n k}\left[\begin{array}{c}
n \\
k
\end{array}\right] .
$$

(3.7)

It follows that

$$
F_{n+1}\left(q^{-1}\right)=\sum_{2 k \leqslant n} q^{k^{2}-n k}\left[\begin{array}{c}
n-k \\
k
\end{array}\right]
$$

$$
\left\{\begin{array}{l}
q^{n^{2}} F_{2 n+1}\left(q^{-1}\right)=\sum_{k=0}^{n} q^{(n-k)^{2}}\left[\begin{array}{c}
2 n-k \\
k
\end{array}\right] \tag{3.8}\\
q^{n(n-1)} F_{2 n}\left(q^{-1}\right)=\sum_{k=0}^{n-1} q^{(n-k)(n-k-1)}\left[\begin{array}{c}
2 n-k-1 \\
k
\end{array}\right]
\end{array}\right.
$$

It follows from (2.11) and (3.2) that

$$
\begin{equation*}
\sum_{n=0}^{\infty} F_{n+1}(q) x^{n}=\sum_{k=0}^{\infty} \frac{q^{k^{2}} x^{2 k}}{(x)_{k+1}} \tag{3.9}
\end{equation*}
$$

G.E. Andrews proposed the following problem. Show that $F_{p+1}(q)$ is divisible by $1+q+\cdots+q^{p-1}$, where p is any prime $\equiv \pm 2(\bmod 5)$. For proof see [3]. This result is by no means apparent from (3.2). The proof depends upon the identity

$$
F_{n+1}=\sum_{k=-r}^{r}(-1)^{k} x^{1 / 2 k(5 k-1)}\left[\begin{array}{c}
n \tag{3.10}\\
e(k)
\end{array}\right]
$$

where

$$
e(k)=[1 / 2(n+5 k)], \quad r=\left[\frac{1}{5}(n+2)\right]
$$

In general it does not seem possible to simplify the right member of (3.9). However when $x=q$ it is noted in [3] that

$$
\begin{equation*}
1+\sum_{n=1}^{\infty} F_{n}(q) q^{n}=\sum_{k=0}^{\infty} \frac{q^{k^{2}}}{(q)_{k}}=\prod_{n=0}^{\infty}\left(1-x^{5 n+1}\right)^{-1}\left(1-x^{5 n+4}\right)^{-1} \tag{3.11}
\end{equation*}
$$

4. We now turn to the second problem described in the Introduction. To determine $g(n, k)$ as defined in (1.3) it is clear that
(4.1)

$$
g(n, k)=f(n, k)-h(n, k),
$$

where $h(n, k)$ denotes the number of zero-one sequences ($a_{1}, a_{2}, \cdots, a_{n}$) with k ones, consecutive ones forbidden and in addition $a_{1}=a_{n}=1$. Then $a_{2}=a_{n-1}=0$ while a_{3} and a_{n-2} (if they occur) are arbitrary. Thus, for $n \geqslant 4$, $k \geqslant 2$,
so that (4.1) becomes (4.2)

$$
h(n, k)=q^{n+1+2(k-2)} f(n-4, k-2)=q^{n+2 k-3} f(n-2, k-2),
$$

$$
\begin{equation*}
g(n, k)=f(n, k)-q^{n+2 k-3} f(n-4, k-2) . \tag{4.2}
\end{equation*}
$$

Combining with (2.13) we get

$$
g(n, k)=q^{k^{2}}\left[\begin{array}{c}
n-k+1 \tag{4.3}\\
k
\end{array}\right]-q^{n+(k-1)^{2}}\left[\begin{array}{c}
n-k-1 \\
k-2
\end{array}\right] \quad(n \geqslant 4, k \geqslant 2) .
$$

As for the excluded values, it is clear that
(4.4)

Also it is easily verified that

$$
g(n, 0)=1, \quad g(n, 1)=q\left[\begin{array}{c}
n \\
1
\end{array}\right] \quad(n \geqslant 1) .
$$

$$
g(3, k)=0 \quad(k \geqslant 2),
$$

so that (4.3) holds for all $n \geqslant 1$. It is convenient to define
(4.5)

$$
g(0,0)=1, \quad g(0, k)=0 \quad(k>0) .
$$

Now put
(4.6)

$$
g(n)=\sum_{2 k \leqslant n+1} g(n, k) .
$$

Then by (3.2) and (4.3) we have
(4.7)
where
(4.8)

$$
f^{\prime}(n)=\sum_{2 k \leqslant n+1} q^{(k+2)^{2}}\left[\begin{array}{c}
n-k+1 \\
k
\end{array}\right]
$$

It is easily verified that
(4.9)

$$
f^{\prime}(n)-f^{\prime}(n-1)=q^{n+1} f^{\prime}(n-2)
$$

We now define
(4.10)
(4.11)

$$
\begin{gathered}
L_{n}(q)=F_{n+2}(q)-q^{n} F_{n-2}^{\prime}(q) \quad(n \geqslant 2), \\
F_{n+1}^{\prime}(q)=f^{\prime}(n-1), \quad F_{0}^{\prime}(q)=0 .
\end{gathered}
$$

We have

$$
F_{n+1}^{\prime}(q)-F_{n}^{\prime}(q)=q^{n+1} F_{n-1}^{\prime}(q) ;
$$

this recurrence should be compared with (3.4).
The first few values of $L_{n}(q)$ are

$$
\begin{gathered}
L_{2}(q)=1+q+q^{2}, \quad L_{3}(q)=1+q+q^{2}+q^{3} \\
L_{4}(q)=1+q+q^{2}+q^{3}+2 q^{4}+q^{6} \\
L_{5}(q)=1+q+q^{2}+q^{3}+2 q^{4}+2 q^{5}+q^{6}+q^{7}+q^{8}
\end{gathered}
$$

It follows from (4.8) that

$$
\begin{equation*}
\sum_{n=0}^{\infty} F_{n+1}^{\prime}(q)_{x}^{n}=\sum_{k=0}^{\infty} q^{(k+1)^{2}} x^{2 k} /(x)_{k+1} \tag{4.13}
\end{equation*}
$$

The first few values of $F_{n}^{\prime}(q)$ are

$$
\begin{array}{cc}
F_{1}^{\prime}(q)=q, \quad F_{2}^{\prime}(q)=q, \quad F_{3}^{\prime}(q)=q+q^{4}, \quad F_{4}^{\prime}(q)=q+q^{4}+q^{5}, \\
F_{5}^{\prime}(q)=q+q^{4}\left(1+q+q^{2}\right)+q^{9}, \quad F_{6}^{\prime}(q)=q+q^{4}\left(1+q+q^{2}+q^{3}\right)+q^{9}\left(1+q+q^{2}\right) .
\end{array}
$$

Thus, for example

$$
L_{4}(q)=F_{6}(q)-q^{4} F_{2}^{\prime}(q)=\left(1+q+q^{2}+q^{3}+2 q^{4}+q^{5}+q^{6}\right)-q^{5}
$$

$$
L_{5}(q)=F_{7}(q)-q^{5} F_{3}^{\prime}(q)=\left(1+q+q^{2}+q^{3}+2 q^{4}+2 q^{5}+2 q^{6}+q^{7}+q^{8}+q^{9}\right)-q^{5}\left(q+q^{4}\right)
$$

in agreement with the values previously found.

It would be of interest to find a simple combinatorial interpretation of $F_{n}^{\prime}(q)$.
5. By means of the recurrence (3.4) we can define $F_{n}(q)$ for negative n. Put
(5.1)

$$
\bar{F}_{n}(q)=(-1)^{n-1} F_{-n}(q)
$$

Then (3.4) becomes
where

$$
\begin{equation*}
\bar{F}_{n}(q)=q^{n}\left(\bar{F}_{n-1}(q)+\bar{F}_{n-2}(q)\right) \quad(n \geqslant 2) . \tag{5.2}
\end{equation*}
$$

$$
\bar{F}_{0}(q)=0, \quad \bar{F}_{1}(q)=q .
$$

Put

$$
\Phi(x)=\sum_{n=0}^{\infty} \bar{F}_{n}(q) x^{n}
$$

Then

$$
\Phi(x)=q x+\sum_{n=2}^{\infty} q^{n}\left(\bar{F}_{n-1}(q)+\bar{F}_{n-2}(q)\right) x^{n}
$$

so that
(5.4)

$$
\Phi(x)=q x+q x(1+q x) \Phi(q x) .
$$

Thus

$$
\begin{aligned}
\Phi(x) & =q x+q x(1+q x)\left\{q^{2} x+q^{2} x\left(1+q^{2} x\right) \Phi\left(q^{2} x\right)\right\} \\
& =q x+q^{3} x^{2}(1+q x)+q^{3} x^{2}(1+q x)\left(1+q^{2} x\right) \Phi\left(q^{2} x\right)
\end{aligned}
$$

At the next stage we get

$$
\Phi(x)=q x+q^{3} x^{2}(1+q x)+q^{6} x^{3}(1+q x)\left(1+q^{2} x\right)+q^{6} x^{3}(1+q x)\left(1+q^{2} x\right)\left(1+q^{3} x\right) \Phi\left(q^{3} x\right)
$$

The general formula is evidently

$$
\begin{equation*}
\Phi(x)=\sum_{k=0}^{\infty} q^{1 / 2(k+1)(k+2)} x^{k+1}(1+q x)\left(1+q^{2} x\right) \cdots\left(1+q^{k} x\right) \tag{5.5}
\end{equation*}
$$

Since

(5.5) becomes

$$
(1+q x)\left(1+q^{2} x\right) \cdots\left(1+q^{k} x\right)=\sum_{j=0}^{k}\left[\begin{array}{l}
k \\
j
\end{array}\right] q^{1 / j(j+1)} x^{j}
$$

$\Phi(x)=\sum_{k=0}^{\infty} q^{1 / 2(k+1)(k+2)} x^{k+1} \sum_{j=0}^{k}\left[\begin{array}{l}k \\ j\end{array}\right] q^{1 / 2(j+1)} x^{j}=\sum_{n=0}^{\infty} x^{n+1} \sum_{2 j \leq n}\left[\begin{array}{c}n-j\end{array}\right] q^{1 / j(j+1)+1 / 2(n-j+1)(n-j+2)}$.
Comparison with (5.3) gives

$$
\bar{F}_{n+1}(q)=\sum_{2 i \leqslant n}\left[\begin{array}{c}
n-j \tag{5.6}\\
j
\end{array}\right] q^{1 / 2(n+1)(n+2)-n j+j(j-1)}
$$

The first few values of $\bar{F}_{n}(q)$ are

$$
\begin{gathered}
\bar{F}_{2}(q)=q^{3}, \quad \bar{F}_{3}(q)=q^{4}\left(1+q^{2}\right), \quad \bar{F}_{4}(q)=q^{7}\left(1+q+q^{3}\right) \\
\bar{F}_{5}(q)=q^{9}\left(1+q^{2}+q^{3}+q^{4}+q^{6}\right), \quad \bar{F}_{6}(q)=q^{13}\left(1+q+q^{2}+q^{3}+q^{4}+q^{5}+q^{6}+q^{8}\right)
\end{gathered}
$$

REFERENCES

1. L. Carlitz, "Fibonacci Notes, I. Zero-one Sequences and Fibonacci Numbers of Higher Order," The Fibonacci Quarterly, Vol. 12, No. 1 (February, 1974), pp. 1-10.
2. J. Riordan, An Introduction to Combinatorial Analysis, Wiley, New York, 1958.
3. Problem H-138, The Fibonacci Quarterly, Vol. 8, No. 1 (February, 1970), p. 76.
