POWER SERIES AND CYCLIC DECIMALS

NORRIS GOODWIN
Santa Cruz, California 95060

There is an interesting relation between series based on the powers of an integer, and infinitely repeating decimal reciprocals whereby the sum of the powers of a single integer give not one, but two reciprocals. Figures 1 and 2 illustrate this in the case of the two integers 3 and 19 , which yield respectively the decimal reciprocals $1 / 29,1 / 7$; and $1 / 189,1 / 81$. The left-hand member in each instance starts at the decimal point and develops (in reverse) to the left. Although it is obviously not a decimal, it is purely cyclic, and has the repetend of its decimal version. Since shifting the decimal by a suitable divisor rectifies this, and for the sake of simplicity, it is treated here as a decimal.
If M is any integer having k digits, the following equations apply:

$$
\begin{equation*}
1 /(10 M-1)=\sum_{n=1}^{\infty} M^{n-1} \times 10^{n-1} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
1 /\left(10^{k}-M\right)=\sum_{n=1}^{\infty} M^{n-1} \times 10^{-k n} \tag{2}
\end{equation*}
$$

Equation (1) is limited by the expression (10M - 1) to a fraction having a denominator with the last digit 9 , and will thus be odd and yield a cyclic decimal fraction having a repetend with the terminal digit 1. Equation (2) is limited by the expression $\left(10^{k}-M\right)$ to a denominator which is the complement of M and will thus be odd, or even, and will not be limited as to type of repeating decimal. In the preparation of Figs. 1 and 2, zeros not contributing to the relations shown have been omitted.

$$
19
$$

$$
361 \quad 19^{n-1} \times 10^{-2 n}
$$

6859
130321
2476099
4704588
$893871 \ldots$
$169835 \ldots$
$32268 \ldots$
$6131 \ldots$
$551 \ldots$

$$
012345679 . \ldots \ldots
$$

Figure 2

* *

ON GENERATING FUNCTIONS FOR POWERS OF A GENERALIZED SEQUENCE OF NUMBERS

A. F. HORADAM
University of New England, Armidale, Australia

GENERATING FUNCTIONS

For the record, some results are presented here which arose many years ago (1965) in connection with the author's paper [3]. Familiarity with the notation and results of Carlitz [1], Riordan [6], and the author [2], [3] and [4], are assumed in the interests of brevity. Note, however, that h_{n} in [3] has been replaced by H_{n} to avoid ambiguity. Our results and techniques parallel those of Riordan.
Calculations yield

$$
\begin{gather*}
H_{n}^{2}-3 H_{n-1}^{2}+H_{n-2}^{2}=2(-1)^{n} e \\
H_{n}^{3}-4 H_{n-1}^{3}-H_{n-2}^{3}=3(-1)^{n} e H_{n-1} \quad\left(e=r^{2}-r s-s^{2}\right) \\
H_{n}^{4}-7 H_{n-1}^{4}+H_{n-2}^{4}=2 e^{2}+8(-1)^{n} e H_{n-1}^{2} \quad \\
H_{n}^{5}-11 H_{n-1}^{5}-H_{n-2}^{5}=5 e^{2} H_{n-1}+15(-1)^{n} e H_{n-1}^{3} . \tag{1}
\end{gather*}
$$

and so on. Corresponding generating functions for the $k^{\text {th }}$ power of H_{n},
[Continued on page 350.]

