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H.W.GOULD 
West Virginia University, M organ town, West Virginia 26506 

The object of this note is to point out some curious sequences which may be generated by natural number spirals 
and rotating grids. The method is a combination of the spiral introduced by Ulam [2] in his studies of prime number 
distribution and a well known technique employed in cryptographic work. We illustrate with Fibonacci numbers. 

Ulam considers a spiral numbering of the lattice points in the plane, i.e., by starting at (0,0) and proceeding 
counterclockwise in a spiral so that 

(0,0)^1, (7,0)-+2, (1,1}* $, (0,1)-* 4, (-1,1)-* 5, (-1,0)-* 6, (-1,-1)-+7, (0,-1)^8, 

(1-1) ~>9, (2-1) -10, (2,0) - /1, (2,1) - 12, (0,2) - 13, (-1,2) -* 14, etc. 

This mapping gives us the spiral below. 
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A nice illustration of the basic Ulam spiral makes up the front cover of the March 1964 Scientific American. In the 
same issue Martin Gardner [1] gives an account of Ulam's work. Briefly, Ulam marks the primes (1,2,3,5,7,11,—) in 
the spiral and studies the visual display for patterns or almost-patterns in the prime number sequence. By use of a 
computer at Los Alamos he is able to generate displays having around 65,000 points in them. It would be of interest 
to try something of the same sort for the Fibonacci, Lucas, and other recurrent sequences, however the writer does 
not have available such versatile equipment as that used by Ulam and his colleagues at Los Alamos, so we have little 
to suggest about possible patterns in a spiral display of Fibonacci numbers. Of course, the fact that we now know [3 ] , 
[4] that 1 and 144 are the only square Fibonacci numbers does tell us that the diagonals 1,9ff25,49, — and 4, 16, 
36, 64, —. will be conspicuously blank in such a display. 

Now, there is a technique in cryptographic work which makes use of a rotating grid. We can best illustrate by means 
of an example. Consider the message, 'INTUITION LIKE A FLASH OF LIGHTNING LASTS ONLY FOR A 
SECOND." We write this in a square array 

I N T U I T ! 
ON L I K EA 
F L A S H O F 
L I G H T N I 
NG L A S T S 
ON LY F 0 R 
A S E C D N D 
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and then impose a prepunched grid, e.g., of the form (where an X indicates a hole) 
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and copy out the visible letters, which are (serially, row by row) ITTIAOHTSOLOC. We then rotate the grid counter-
clockwise through 90° and again copy out the visible letters, which are IOLESIHIMLTAIM. Two more rotations gives 
us UMKAFGHGSYSODand NILHFLHNAIMFRE. Running these four groups together and breaking the whole up in-
to convenient blocks then gives us the enciphered message. To decipher, one merely places the grid on a sheet of pa-
per, writes in the letters serially, row by row, thirteen at a time here, rotating the grid until all four positions are used, 
removes the grid and reads off the message. Here we have used a 7 by 7 grid which leaves the middle point fixed (H). 
This is unsatisfactory for cryptographic work in some cases and most ordinary uses involve an even-order grid. 

The effect of an odd-order grid in the case of superposition on the natural number spiral is to partition the natural 
numbers into four sets, any two of which have onlv the number 1 in common. 

It is clear that the very special cryptographic grid cannot be made from the Fibonacci sequence (or the prime num-
ber sequence) without adding and/or deleting elements, since any given square annulus of the grid must be so design-
ed that one-fourth of its lattice points are punched, and in such a way that the same hole does not appear under 
successive rotations of 90° until the original position is assumed. We shall not discuss how this can be effected. 

We modify the rotating grid as follows. On the original natural number spiral (1) superimpose a square sheet of 
paper which will just cover the first (2n - 1)2 natural numbers, unity being kept at the center. IVSake a grid by punch-
ing the sheet wherever an element ak (k = 1,2, 3, •-) of a given sequence appears in the natural number spiral. We 
shall call this the (counterclockwise) spiral grid of the sequence \ak\. We next rotate the spiral grid through 90° 
and read off from the natural number spiral a new sequence generated by the spiral grid of our original sequence. 
With any given sequence there will be associated three new sequences, and by turning the grid over (making it a clock-
wise spiral grid) we can generate four other sequences. Clearly all these eight sequences will be somehow related, 

For a grid measuring 2n - / by 2n - 1 (n>2) there will be the natural numbers from 7 through (2n - 1)2 

with the outer square annulus containing the successive natural numbers from (2n - 3)2 + 1 to (2n - I)2. If an 
element ak of our given sequence lies in the outer square annulus, then so will the corresponding element b'k of any 
of the associated sequences obtained by use of the grid. It is possible to work out complicated formulas relating bk 

to ak depending upon the position of an element in the annulus. For example, any two diagonally opposite ele-
ments in the outer annulus have numerical difference 4n. 

We give below, in Table 1, a few values for the sequences generated by the counterclockwise spiral grid of the Fib-
onacci sequence (I, I I , I I I , IV) and also for the clockwise grid (T, IT, I I I ' , IV) . 

Here, d = dk is the minimum positive difference between terms in the sequences, or 

d = dk = min (b'k - b{) > 0, 
U 

(with d0M. = Q) 

for Counterclockwise (I - SV), or for Clockwise (V ~ IV) . 
In our table, ak = Fk+u with 

Fk+1 = Fk + Fk-1. Fo = 0, Fj= I 

St is convenient to begin our sequence with F2 instead of making some rules abouthowto interpret 0, 1, 1,2,3, - . 
(The indistinguishability of f y and F2 prevents us from calling the ordinary Fibonacci sequence a subset of the 
set of all natural numbers.) 

There is no reason to confine our attention to spirals based on a square. Ulam's work with the sequence of primes 
quite naturally fits in well with such a spiral because quadratic polynomials Ax + Bx + C are often so rich in 
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13 

a* 

I 
— 

2 
3 
5 
8 
13 
21 
34 
55 
89 
144 
233 
377 

»i 
II 

r~ 2 
4 
5 
7 
17 
25 
40 
63 
99 
156 
249 
397 

bk ' 

III 
. _ 

4 
6 
7 
9 
13 
21 
46 
71 
109 
168 
265 
417 

Table 1 

• etc. 

IV 

1 
3 
6 
8 
9 
17 
25 
28 
79 
119 
132 
281 
437 

r 
— 

3 
5 
6 
8 
17 
25 
34 
67 
103 
134 
265 
405 

II' 

1~~ 
2 
5 
7 
8 
13 
21 
40 
75 
113 
146 
281 
425 

IIS' 

~ 
2 
4 
7 
9 
17 
25 
46 
51 
83 
158 
233 
365 

IV 

1 
3 
4 
6 
9 
13 
21 
28 
59 
93 
122 
249 
385 

d 

(T 
1 
1 
1 
1 
4 
4 
6 
8 
10 

| 12 
16 

I 20 
primes for integral values of x (Euler's polynomial x +x + 41 being the most well-known example). However, to 
exhibit other properties of a sequence, as well as to generate variations of a given sequence, it is natural to pass on to 
figurate numbers as the basis of our spirals. That is, we may consider a polygon of m sides. 

Consider, for example, a pentagonal spiral as shown below. 
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It would be of interest to examine the distribution of primes, Fibonacci numbers, etc., in an extended pentagon with 
thousands of points, and of course this would require quite an elaborate computer set-up. 

It is fairly easy to type out a pentagonal spiral on ordinary typing paper with 456 points and this is sufficient to 
give an idea of how the pentagonal spiral grid of the Fibonacci sequence can be used to generate curious sequences. 
Here, of course, we shall have in all ten sequences. The sequences are tabulated below in Table 2. 

The number d tabulated in the last column is defined as before by 

(3) d = min (bi
k-h{) > Q 

(for I - V or I' - V ) , and it is not difficult to see that for any given value of k the numbers II - V determined 
by our grid will differ from the Fibonacci number ak by a multiple of the number d. The reader may find it of in-
terest to try and develop a general formula for d in terms of k and m (generalizing to an /7?-gon). 
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Table 2 

_Jk 
" 1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

3k 

I 
1 
2 
3 
5 
0 
13 
21 
34 
55 
89 
144 
233 
377 

bk 

n_ 
1 
3 
4 
6 
10 
15 
24 
38 
60 
95 
152 
243 
389 

bk 

in 
1 
2 
4 
5 
7 
12 
27 
42 
65 
101 
160 
253 
341 

... 

IV 
1 
3 
5 
6 
9 
14 
30 
46 
70 
77 
168 
263 
353 

etc. 

V 
1 
2 
4 
6 
11 
16 
18 
50 
75 
83 
176 
273 
365 

!' 
1 
3 
4 
6 
10 
15 
19 
38 
59 
77 
156 
241 
371 

II' 
1 
2 
4 
5 
7 
12 
22 
42 
64 
83 
164 
251 
383 

III' 
1 
3 
5 
6 
.9 
14 
25 
46 
69 
89 
172 
261 
335 

IV 
1 
2 
4 
6 
11 
16 
28 
50 
74 
95 
180 
271 
347 

V 
1 
2 
3 
5 
8 
13 
31 
34 
54 
101 
148 
231 
359 

d 
0 ' 
1 
1 
1 
1 
1 
3 
4 
5 
6 
8 
10 
12 

The visual display of perfect squares in a pentagonal spiral turns out to be a simple trefoil spiral appearing some-
what as diagrammed below. 

This is easily verified to be in accord with the fact that the three arms of the spiral are formed by squares of form 
(3n)2, (3n + 1)2, and (3n+2)2, respectively. 
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Finally, we turn to the case of a triangular spiral grid. Because of the hexagonal rotational character in this case, 
one may generate 12 sequences for a given spiral grid, 6 counterclockwise and 6 clockwise. A portion of the triangu-
lar spiral appears below. 

39 7 35 
15 13 50 

26 3 22 
8 6 34 

16 1 12 
4 2 21 

9 10 5 
18 19 11 

The 12 sequences generated by a triangular spiral grid based on the Fibonacci numbers are tabulated in Table 3. 

Table 3 
d ..d* I 

1 
2 
3 
5 
8 
13 
21 
34 
55 
89 

il 
1 
4 
6 
8 
15 
22 
23 
35 
57 
70 

III 
1 
3 
4 
7 
10 
16 
25 
39 
61 
97 

IV 
1 
2 
8 
10 
18 
26 
27 
40 
63 
77 

V 
1~ 
2 
4 
6 
9 
19 
29 
44 
49 
105 

VI 

~~1 
3 
6 
10 
12 
30 
31 
45 
51 
84 

r 
1 
3 
4 
6 
9 
15 
27 
40 

i 5 1 

99 

II' 
1 
3 
8 
10 
16 
29 
30 
44 
55 
81 

III' 

~~7~ 
2 
4 
5 
8 
18 
31 
45 
57 
107 

IV 
1 
4 
6 
10 
19 
21 
22 
34 
61 
67 

V 
1 
2 
3 
7 
10 
12 
23 
35 
63 
91 

VI' 
~1 
2 
6 
8 
13 
25 
26 
39 
49 
74 

~~i 0 
1 
1 
1 
1 
3 
4 
5 
6 
8 

0 
1 
2 
2 
3 
4 
4 
5 
6 
7 

Here, d is based on either l - l i l - V or I* — 111' — V* while d* is based on II - IV - VI or I I ' - I V - V I ' . 
This is because I I , IV, and VI arise from the hexagonal effect. Thus it seems of interest to list d as based on both 
triangular pattern and hexagonal. 

With this much as an introduction to the notion of a spiral grid for generating variations of a given sequence, we 
shall close this account. Our purpose has been mainly to exhibit the results of some calculations and suggest possible 
avenues of research. Various questions could be posed. For example: What can be said about divisibility properties 
of the new sequences? What can be said about when such sequences will satisfy simple recurrence relations? Does 
any of this shed light on when a Fibonacci number may be a figurate number? Can simple formulas be written for 
the various derived sequences? What is a simple formula for the number we have called dl 
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