REFERENCES

1. Marshall Hall, "Divisibility Sequences of Third Order," Amer. Journal of Math., Vol. 58, 1936, pp. 577-584.
2. A.F. Horadam, "Fibonacci Number Triples," Amer. Math. Monthly, Vol. 68, 1961, pp. 751-753.
3. Dov Jarden, Recurring Sequences, Riveon Lematematika, Jerusalem, 1966.
4. Edouard Lucas, The Theory of Simply Periodic Numerical Functions (Douglas Lind, Ed.), Fibonacci Association, California, 1969.
5. Percy A. Macmahon, Combinatory Analysis, Vol. 1, University Press, Cambridge, 1915.
6. A.J. van der Poorten, "A Note on Powers of Recurrence Sequences," Duke Math. Journal, submitted.
7. A.G. Shannon, "A Fundamental Recursive Sequence Related to a Contraction of Bernoulli's Iteration," The Fibonacci Quarterly, submitted.
8. A.G. Shannon and A.F. Horadam, "A Generalized Pythagorean Theorem," The Fibonacci Quarterly, Vol. 9, No. 3 (May, 1971), pp. 307-312.

LETTER TO THE EDITOR

January 1, 1973
Dear Prof. Hoggatt:
HAPPY NEW YEAR. Here is a problem:
Let $p_{1}, p_{2}, \cdots, p_{s}$ be given primes and let $a_{1}<a_{2}<\cdots$ be the integers composed of the primes $p_{1}, p_{2}, \cdots p_{r}$. Put

$$
A_{k}=\left[a_{1}, a_{2}, \cdots, a_{k}\right]
$$

(least common multiple), then

$$
\sum_{k=1}^{\infty} \frac{1}{A_{k}}
$$

is irrational. (Conjecture) This is undoubtedly true, but I cannot prove it. All I can show is that

$$
\sum_{k=1}^{\prime} \frac{1}{A_{k}}
$$

is irrational, where in Σ^{\prime} the summation is extended only over the distinct A_{k} 's (i.e., if

$$
\left[a_{1}, \cdots, a_{k}\right]=\left[a_{1}, \cdots, a_{k+1}\right]
$$

then we count only one of the $\left.1 /\left[a_{1}, \cdots, a_{k}\right]\right)$.

