Assume

$$
\begin{aligned}
&(5+3 \sqrt{5})(9+4 \sqrt{5})^{t}=s_{t}+L_{6 t+2} 5, \quad s_{t}^{2}=5 L_{6 t+2}^{2}-20 \\
&(5+3 \sqrt{5})(9+4 \sqrt{5})^{t+1}=9 s_{t}+20 L_{6 t+20}+\sqrt{5}\left(9 L_{6 t+2}+4 s_{t}\right) \\
& 9 L_{6 t+2}+4 s_{t}=9 L_{6 t+2}+4 \sqrt{5\left[\alpha^{\left.\left.6 t+2+\beta^{6 t+2}\right)^{2}-4\right]}=9 L_{6 t+2}+20 F_{6 t+2}\right.} \\
& L_{6 t+8}=a^{6 t+8}+\beta^{6 t+8}=(9+4 \sqrt{5}) a^{6 t+2}+(9-4 \sqrt{5}) \beta^{6 t+2} \\
&=9 L_{6 t+2}+20 F_{6 t+2}
\end{aligned}
$$

(b) A second solution chain is given by the rational part (for s) and the irrational part (for n) of

$$
(15+7 \sqrt{5})(9+4 \sqrt{5})^{t}, \quad t=0,1,2, \cdots
$$

The proof that the irrational part of

$$
(15+7 \sqrt{5})(9+4 \sqrt{5})^{t}
$$

is identical to $L_{6 t+4}$ is similar to that used in III (a).
(c) A third solution chain is given by the rational part (for s) and the irrational part (for n) of

$$
(40+18 \sqrt{5})(9+4 \sqrt{5})^{t}, \quad t=0,1,2, \cdots
$$

The proof that the irrational part of

$$
(40+18 \sqrt{5})(9+4 \sqrt{5})^{t}
$$

is identical to $L_{6 t}$ is similar to that used in III (a).
Also solved by P. Bruckman, P. Tracy, and J. Ivie.
*
[Continued from Page 368.]

$$
y+1 \leqslant z<y+(x / n)
$$

is a necessary condition for a solution. Thus, we see that there can be no solution for integer $x, 1 \leqslant x \leqslant n$, a well known result (see [1, p. 744]). Again, if $y=n$, there is no solution for $1 \leqslant x \leqslant n$, a well known result (see [1, p. 744]). Our proof can also be used to establish the following general result.
Theorem 2. For $n \geqslant m \geqslant 2$ and integers $A \geqslant 1, B \geqslant 1$, the equation

$$
A x^{n}+B y^{m}=B z^{m}
$$

has no solution whenever $A x^{n-m+1}+B m y \leqslant B m z$.
REMARK. Theorem 2 gives Theorem 1 for $A=B$ and $n=m$.

REFERENCE

1. L.E. Dickson, History of the Theory of Numbers, Vol. 2, Diophantine Analysis, Carnegie Institute of Washington, 1919, Reprint by Chelsea, 1952.
