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H-255 Proposed by L Car/itz, Duke University, Durham, North Carolina. 

Show that 
2m 2n 
V V /_ 1 \i+k I2m\(2n\(2m+2n\ f 2m + 2n \ s / 1}m+n (3m + 3n)!(2m)!(2n)i 
Z-r L*1 / ; V / A k t\ j + k )\2m-j+k) f ,7 m!n!(m+n)!(2m+n)!(m+2n)! ' 
j=0 k=0 
where (a)k - a(a + 1) »•• (a+k - 1). 

H-256 Proposed by E. Karst, Tucson, Arizona. 

Find all solutions of 
(i) x + y + z = 22nH -1 

and 
(Si) x*+y*+z3 « 26n+1 - 1, 

simultaneously for/7 < 5, given that 
(a) x, y,z are positive rationaIs 
(b) 22n+1 - 1, 26n+1 - / are integers 
(c) n = iog2x/F, where t is a positive integer. 

H-257 Proposed by V. E. Hoggatt, Jr., San Jose State University, San Jose, California. 

Consider the array, D, indicated below in which F2n+1 (n - 0, 1, 2, -t is written in staggered columns 
1 
2 
5 

13 
34 
89 

1 
2 
5 

13 
34 

1 
2 
5 

13 

1 
2 
5 

1 
2 1 

i) Show that the row sums are p2n+2 (n ~ ft t 2, — i 
(ii) Show that the rising diagonal sums are Fn+lFn+2 (n ~ ft IZ ttll 
(iii) Show that if the columns are multiplied by 1,2, 3, -sequentially to the right, then the row sums are p2n+3m 

1(n = 0, 1,2,-') 
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READER COMMENTS 

Paul Bruckman noted that H-241 Is identical to H-206. 
Charles Wall noted that H-188 is a weaker version of B-141. 

H-239 Correction 
The given inequality should read 

\a b\ 100 \d b\ 100 " 

SOLUTIONS 
A NEST OF SUBSETS 

H-223 Proposed by L Carlitz and R. Scoville, Duke University, Durham, North Carolina. 

Let S be a set of k elements. Find the number of sequences (Ax, A2, •»., An) where each A/ is a subset of S, and 
where Ax CA2,A2 DA3,A3 CA4,A4 DAS, etc. 
Solution by the Proposers. 

Let 0j be the characteristic function of Ax, <p2 the characteristic function of A2, 03 of A\, 04 of A'4I etc. The 
condition on the Afs is equivalent to 

(1K Mi) - / - 0/+/W - ft V -

For instance, suppose/I; c /1/̂ .y. Then/* / is even. li<p/(j)= 1, then j <E A;, J <E A,+i, j £ Aj+i and ty+ifj) = 0. 
The matrix f0/f/A/ has £ columns each of which is a sequence of 0's and 1's of length n in which no 1's occur con-

secutively. Since there are Fn+2 such sequences, there are Fk
n+2 matrices satisfying (1)'. 

SUMLEGENDRE 
H-227 Proposed by L Carlitz, Duke University, Durham, North Carolina. 

Show that 
m n min(m,n) 

E E (-Vm+n~hk (J)[nk) (aj + ck)m(hj + dk)n = mini £ [?)[",) ^^n"r(bc)r . 
1=0 k=0 X ! ! r~0 X ! j 

Sn particular, show that the Legendre polynomial Pn(x) satisfies 
n 

(n!)2PnM= E (-1,I+k [")[ k) <ai + ck)n(bj + dk)n, 

where ad = 1/2(x + 1), be = %(x - 1). 
Solution by the Proposer. We have 

m n 
^ £ (-Vm+*+kt mUn \ (aj+ ck)m(bj+ dk)n 

M k=o N M ' 
m n m n 

E E (-"m+n-hk (7)(Z) E E (•",)[:) wwi 
1=0 k=0 \ l\ I r==Q sssQ \ l\ I 

m n 
r=n *=n ' s I r=0 s=0 
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where 
m n 

V n = Z (- »"* ( 7 ) im+n^s E <~ "** C I ) kr*s • 
Since 

m 

x>?r-/(7)/<={r fr;ft-
it follows that 5 m > n = 0 unless 

j m + n — r — s > m 
i r+s > n * 

that is, r + s~s. Hence 
m n 

Y*1L (-Dm+n~hk(T)(n
k) (aj + ck)m(bj + dk)n - m!n! £ ( ? ) ( £ ) a^c'b^d8 

j=0 k=0 r+s=n 

mm (m,n) 

Since (see for example G. Szego's Orthogonal Polynomials, p.. 67)" 

the second assertion follows at once. 
ATBIANGULAR ARRAY 

H-229 Proposed by L Carlitz, Duke University, Durham, North Carolina. 

A triangular array A(n,k) (0 < k < n) is defined by means of 

{*v | A(n + 7, 2k) = A(n, 2k - 1) +aA(n, 2k) 

1 A(n + I 2k +1) = A(n, 2k) + bA(n, 2k + 1) 

together with 
A(0,0) = 1, A(0,k) - 0 (k t 0) 

Find A(n,k) and show that 

] P A(n,2k)(ab)k - a(a+hf~1, 
k 

] T A(n,2k+1)(ab)k = (a + h)n~1 . 
k 

Solution by the Propsoer. 

It follows from the definition that 

A(n,0) = 5° (n * 0,i,2,-»). 

Then 
/ I f e / i = a^'+bAfn- 1, 1) 

so that 
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Put 

Then by (*) 

so that 

Similarly 

It follows that 

Since 

we get 

A(n,1)=a—^-
a — b 

Ak(x) = Y, A(n,k)xn. 
n=k 

oo 

A2kM = J2 (A(n-~ I 2k- 1) + aA(n- 1, 2k))xn - xA2k-iM + axA2k(x)f 

n=k 

(1 -ax)A2k = xA2k-lM-

(1 -bx)A2k+1(x) = xA2k(x). 

\ A2k+1(x) = x2k+1(1-axrk"1(1-bxrk'1 

A2k M = x2k(1 - axFk'1(1 - bxfk 

n~2k-1 

A(n,2k+1)= £ {k+
k
t){n-k-r-1)atbn-2k-r-1 

n-2k 

r=Q 
it follows from (**) that 

(***) 

E *2kMy2k - n - z u ^ 
k=0 

(1-ax)(1-hx)~x2y2 

J2 A2k+1(x)y 2k+1 _ JUL 

Hence 

For a = b this reduces to 

k=0 
(1-ax)(1 -bx)-x2y2 

£ *«** - „_J,7^,V • 
which is correct. 

Finally, taking y2 = ab in (***), we get 

7 - ax ~xy 

£3 A(n/2k)(ab)k = a(a+bf~\ £ A(n, 2k+1)(ab)k - (a+bf~1 . 

*kkkkkk 


